В чем особенность белков плазмы крови и их функции

В чем особенность белков плазмы крови и их функции

а) Запасание аминокислот в виде белков в клетках. Практически сразу после поступления в клетки тканей аминокислоты связываются друг с другом пептидными связями благодаря непосредственному влиянию матричной РНК и рибосомальных систем и образуют белки, поэтому концентрация аминокислот в клетках остается низкой. Кроме этого, свободные аминокислоты никогда не запасаются в клетках, их хранение возможно только в виде белков. Многие из этих внутриклеточных белков могут вновь быстро преобразовываться в аминокислоты под влиянием внутриклеточных лизосомальных пищеварительных ферментов. Появляющиеся при этом аминокислоты поступают в кровь. Исключение составляют только белки, присутствующие в ядре клетки и на хромосомах, и некоторые структурные белки (например, белки коллагеновых волокон и сократительные белки мышц). Эти белки не принимают участия в процессах, приводящих к выходу из клеток аминокислот, составляющих белки, после их переваривания.

Некоторые ткани способны участвовать в запасании аминокислот в большей степени, чем другие. Так, печень — крупный орган, имеющий особые системы для обработки аминокислот, который может запасать большие количества быстрообмениваемых белков. Это также свойственно, хотя и в меньшей степени, почкам и слизистой кишечника.

б) Высвобождение аминокислот из клеток как способ регуляции концентрации аминокислот в плазме. В случаях падения концентрации аминокислот в плазме крови до слишком низкого уровня необходимые аминокислоты могут транспортироваться из клеток для восполнения возникающего дефицита аминокислот в плазме. Таким образом, концентрация конкретных аминокислот в плазме крови поддерживается на достаточно постоянном уровне. Следует отметить, что некоторые гормоны, секретируемые железами внутренней секреции, способны смещать баланс между белками тканей и циркулирующими в крови аминокислотами. Так, гормон роста и инсулин увеличивают образование белков в тканях, в то время как глюкокортикоиды коры надпочечника повышают концентрацию аминокислот в плазме крови.

в) Подвижное равновесие между белками различных частей тела. Вследствие того, что внутриклеточные белки в печени (а также в других тканях, но в несколько меньшей степени) могут быстро синтезироваться из аминокислот плазмы крови и столь же быстро распадаться до возвращающихся в плазму аминокислот, практически во всех клетках организма поддерживается постоянный обмен и равновесие между аминокислотами плазмы крови и мобильными белками.

Например, если возникает потребность в белках в какой-то конкретной ткани, она может синтезировать белки из аминокислот крови. В свою очередь, белки плазмы восполняются за счет распада белков в других клетках организма, особенно белков печени. Эта возможность особенно заметна на примере синтеза белков раковыми клетками. Раковые клетки потребляют аминокислоты в больших количествах, что приводит к заметному опустошению белковых компонентов в других клетках.

г) Верхний предел запасания белков. Каждый конкретный вид клеток характеризуется собственным верхним пределом количества запасаемого белка. После того как все клетки достигнут своего предела возможностей запасания белка, избыток аминокислот, циркулирующих в крови, подвергается распаду до каких-то иных веществ или используется на энергетические нужды либо превращается в жиры и гликоген и запасается в этой форме.

Динамическое равновесие тканевых белков, белков плазмы и аминокислот плазмы

Функциональное предназначение белков плазмы крови

Белки плазмы крови подразделяют на три большие группы: альбумины, глобулиныи фибриноген.

Основной функцией альбуминов является создание коллоидно-осмотического давления плазмы крови, которое препятствует потерям плазмы в капиллярах.

Глобулины обеспечивают многие ферментные функции плазмы и, что не менее важно, отвечают за врожденный и приобретенный иммунитет.

Фибриноген во время свертывания крови полимеризуется в длинные нити фибрина, что служит причиной образования сгустка крови, помогающего восстановлению герметичности системы кровообращения.

а) Образование белков плазмы крови. Практически все альбумины и фибриноген плазмы крови наряду с 50-80% глобулинов образуются в печени. Остальные глобулины образуются в лимфоидной ткани. В большинстве своем это гамма-глобулины, представляющие собой антитела иммунной системы.

Скорость образования белков в печени чрезвычайно высока — более 30 г/сут. Некоторые заболевания приводят к быстрому снижению количества белков в плазме крови. Тяжелые ожоги, сопровождающиеся разрушением большой площади поверхности кожи, могут вызвать ежедневную потерю нескольких литров плазмы через разрушенную поверхность. Высокая скорость образования белков плазмы крови печенью в состоянии предупредить в таких случаях смертельный исход. Иногда тяжелые заболевания почек приводят к ежедневным потерям более 20 г белков плазмы крови с мочой на протяжении многих месяцев, и в течение всего этого времени печень оказывается в состоянии восполнять утрачиваемый белок, продуцируя необходимое его количество.

При циррозах печени в паренхиме печени разрастается соединительная ткань, что сопровождается снижением синтеза белков. Это приводит к снижению коллоидно-осмотического давления плазмы крови и развитию генерализованных отеков.

б) Белки плазмы крови как источник аминокислот для тканей. Если белковые компоненты тканей оказываются израсходованными, белки плазмы крови могут послужить источником для быстрого их восстановления. Путем пиноцитоза белки плазмы крови могут целиком поглощаться тканевыми макрофагами. Попав в эти клетки, белки расщепляются до аминокислот, которые затем вновь поступают в кровь и используются всеми клетками организма для образования белков там, где это необходимо. Таким способом белки плазмы крови используются в качестве источника быстрого поступления белка, содержащего аминокислоты, готовые для использования в тканях, нуждающихся в белке.

в) Динамическое равновесие между белками крови и белками тканей. Между белками плазмы, аминокислотами плазмы и белками тканей постоянно существует состояние равновесия (для облегчения понимания просим вас изучить рисунок выше). В исследованиях с использованием радиоактивно меченных атомов было установлено, что в норме ежедневно синтезируются и распадаются около 400 г белка. Это служит проявлением существующего постоянного обмена аминокислот и демонстрирует правило взаимообмена аминокислотами среди различных белков организма. Даже во время голодания или тяжелых истощающих заболеваний отношение общего количества белков тканей к общему количеству белков плазмы в организме остается относительно постоянным, составляя приблизительно 33:1.

В связи с существованием такого динамического равновесия между белками плазмы и прочими белками тела эффективным способом лечения тяжелых острых состояний дефицита белка в организме может быть внутривенное введение белков плазмы крови. Через несколько дней, а иногда и часов аминокислоты введенных белков распределяются среди клеток организма для образования новых белков там, где это необходимо.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Спасающая жизни: плазма крови

Плазма крови является универсальным лекарственным средством, обладающим выраженными дезинтоксикационными и гемостатическими свойствами. Она выполняет различные функции (питательная, транспортная, буферная и другие)

Плазма крови: «Живая вода»

Плазма крови — жидкое межклеточное вещество (рН 7,34–7,36), в котором во взвешенном состоянии находятся форменные элементы крови. Ее процентное содержание в крови составляет 52–61%.

Согласно существующей гипо-тезе, состав плазмы крови напоминает состав воды доисторических морей, в которых зародилась жизнь. Около 93% плазмы — вода, остальное — белки, липиды, угле-воды, минеральные вещества, гормоны, витамины и др. Основные белки — альбумины, глобулины и фибриноген. Их физиологическая роль поистине многогранна: они поддерживают коллоидно-осмотическое (онкоти-ческое) давление, постоянный объем и рН крови, принимают активное участие в свертывании крови, определяют ее вязкость, играют важную роль в иммунных процессах и служат резервом аминокислот.

Переливание плазмы с гепарином в сочетании с антибиотиками эффективно снижает риск летальных исходов при сепсисе (при условии, что у пациента нет сопутствующих тяжелых заболеваний)

С точки зрения фармакологии, транспортная функция белков плазмы крови имеет особое значение: соединяясь с рядом веществ (холестерин, билирубин и др.), а также с лекарственными средствами (пенициллин, салицилаты и др.), они переносят их к тканям.

Переливая плазму

Массовое исследование вопросов применения плазмы при лечении раненых и больных было проведено во время Великой Отечественной войны. Плазма и сыворотка оказались хорошей заместительной средой, которая не только восстанавливает объем циркулирующей крови (ОЦК), но и удерживает его уровень.

Гибель человека в результате кровопотери до недавнего времени связывали исключительно со снижением обеспе-чения органов тканей кислородом (гипоксией). Терапия кровопотери заключалась в остановке кровотечения и переливании донорской крови или эритроцитной массы «капля за каплю». Однако переливание крови зачастую, напротив, приводило к рецидиву кровотечения.

Английские ученые считают, что периодический анализ циркулирующей в крови опухолевой ДНК создает новую парадигму в изучении эволюции рака. Расшифровав ее последовательность, можно понять, как именно опухоль вырабатывает лекарственную устойчивость и, соответственно, более эффективно ей противостоять

Исследования последних лет показали, что донорские эритроциты должны лишь компенсировать недостаточное снабжение тканей кислородом. Острая массивная кровопотеря ведет не только к снижению кислородообеспечения, но и к глубоким нарушениям системы свертывания крови.

Чтобы восстановить кровообращение и разорвать порочный смертельный круг, поднять давление и дать кислород тканям, нужно сделать кровь более жидкой и пополнить ее факторами свертывания. Добиться этого можно, переливая плазму в больших количествах (1–2 литра).

Плазма крови: сегодня и завтра

Плазма устраняет белковый дефицит и повышает онкотическое давление крови, способствуя усилению диуреза и устранению отеков; служит прекрасным дополнением к комплексной терапии инфекционно-токсического шока, печеночной комы, геморраги-ческих синдромов и др.

Продукты переработки плазмы донорской крови — высокотехнологичные современные лечебные препараты, своевременное применение которых спасает жизнь и здоровье многих людей.

Плазма донорской крови — сложная смесь белков (около 500), лечебные свойства многих из которых установлены. Однако срок хранения препаратов крови ограничен, а их производство требует длительного времени. Потребность же в этих препаратах очень высока.

В настоящее время стало возможным получение и применение отдельных белков плазмы, обладающих специфическим дей-ствием, — альбумина, фибриногена, фибрино-лизина (плаз-мина) и др. Активно разрабатываются методы удаления из плазмы (инактивации) вирусов гепатитов, ВИЧ и пр. С помощью генно-инженерных методов ученые трудятся над получением искус-ственно синтезированных белков плазмы крови, что в конечном итоге позволит свести на нет потребность в донорах.

Компоненты и препараты крови, кровезаменители

” data-image-caption=”” data-medium-file=”https://unclinic.ru/wp-content/uploads/2019/06/perelivanie-krovi.jpg” data-large-file=”https://unclinic.ru/wp-content/uploads/2019/06/perelivanie-krovi.jpg” title=”Компоненты и препараты крови, кровезаменители”>

Алена Герасимова (Dalles) Разработчик сайта, редактор

  • Запись опубликована: 04.06.2019
  • Время чтения: 1 mins read

Не будет преувеличением сказать, что выделение отдельных компонентов (составных частей) крови — огромное достижение современной медицины. Широкое внедрение их в практику сыграло большую роль в разработке лечения многих болезней.

Компоненты крови: эритроциты, лейкоциты, тромбоциты

Пациенты, которым требуется переливание крови, часто даже не знают о том, что в медицине часто используются отдельные компоненты.

  • Эритроциты. Прежде всего следует остановиться на выделенных из крови эритроцитах (эритроцитной массе) по возможности лишенных плазмы, содержащей лейкоциты и тромбоциты. Такая эритроцитная масса применяется в борьбе с малокровием у больных, в крови которых содержатся антитела против лейкоцитов и тромбоцитов, наблюдается повышенная чувствительность организма (сенсибилизация) к белкам.
  • Лейкоциты. Другая составная часть крови — лейкоцитная масса используется с хорошим эффектом в случаях резкого уменьшения числа лейкоцитов.
  • Тромбоциты. Тромбоцитная масса переливается при кровотечениях, обусловленных значительным снижением количества тромбоцитов в крови.

Дифференцированное применение отдельных компонентов крови уменьшает возможность образования антител к клеткам крови и предотвращает развитие реакций на переливание.

Кровезаменители: плазма и ее компоненты

Наилучший естественный кровезаменитель — плазма, жидкая часть крови, богатая белками и содержащая вещества, способствующие остановке кровотечения. При шоковых состояниях без кровопотери или при кровотечениях с небольшой потерей крови переливание плазмы может оказать полноценное лечебное действие.

Плазма, заготовленная в условиях строгой стерильности, сохраняется длительное время, не портясь. Высушенная особым способом, она может храниться месяцами и даже годами. Перед переливанием ее разводят дистиллированной водой.

” data-medium-file=”https://unclinic.ru/wp-content/uploads/2019/06/plazma-krovi.jpg” data-large-file=”https://unclinic.ru/wp-content/uploads/2019/06/plazma-krovi.jpg” loading=”lazy” src=”https://unclinic.ru/wp-content/uploads/2019/06/plazma-krovi.jpg” alt=”Плазма крови” width=”900″ height=”600″ srcset=”https://unclinic.ru/wp-content/uploads/2019/06/plazma-krovi.jpg 900w, https://unclinic.ru/wp-content/uploads/2019/06/plazma-krovi-768×512.jpg 768w” sizes=”(max-width: 900px) 100vw, 900px” title=”Компоненты и препараты крови, кровезаменители”> Плазма крови

Стало возможным приготовление и целенаправленное применение отдельных, белков плазмы, обладающих специфическим, присущим каждому из них, действием.

Альбумин. Наиболее ценный препарат для белкового питания тканей и органов. Он поддерживает так называемое коллоидно-осмотическое давление, удерживающее жидкость в кровяном русле. С этим связано его противоотечное действие.

Привлекая тканевую жидкость в кровяное русло, альбумин повышает кровяное давление, если оно почему-либо падает (например, при шоке). Раствор альбумина является высоко эффективным белковым препаратом при травматических и операционных шоках.

Он весьма полезен при недостатке в организме белка. Белковая недостаточность может явиться следствием многих заболеваний, ведущих к потере белка с мочой, мокротой, гноем, ожоговой жидкостью, либо из-за нарушения всасывания пищевых белков (болезни желудочно-кишечного тракта) или от расстройства белкового обмена (болезни печени).

Протеин. Протеин состоит в основном из альбумина, но содержит некоторое количество и других полезных белков. Он готовится из «утильной» крови, например, плацентарной или гемолизированной (которая непригодна для переливания из-за содержащихся в ней разрушенных эритроцитов).

Вследствие этого протеин является более дешевым и доступным препаратом, чем чистый альбумин. От плазмы же он отличается не только более высоким содержанием альбумина, но и тем, что его, как и альбумин, можно прогревать при высокой температуре для уничтожения вируса гепатита, иногда проникающего в кровь. Протеин применяется и оказывает хорошее действие при тех же заболеваниях, что и альбумин.

Знание механизмов свертывания крови и уточнение факторов, вызывающих их нарушение, позволяет применить переливание отдельных недостающих в организме больного действующих веществ.

Фибриноген. Это тот белок крови, который при ее свертывании переходит в нерастворимый фибрин, образующий основу сгустка. Иногда при некоторых патологических родах возникает сильное кровотечение, вызванное недостаточностью одного из белков, необходимых для свертывания фибриногена. Тогда выручает лечебный препарат фибриноген.

Он быстро останавливает фибринолитическое кровотечение в послеродовом периоде, после операций на внутренних органах, при операциях с искусственным кровообращением.

Фибринная пленка применяется местно, при операциях на органах для предотвращения кровотечений мелких сосудов, а также как рассасывающийся материал при ожогах, нейрохирургических операциях на мозге и др.

Тромбин. Тромбин в виде порошка, растворяемого в физиологическом растворе, применяется только местно, на мелких сосудах: при оперативных вмешательствах на паренхиматозных органах (печени, легких, селезенке и др.), кровотечениях из десен, носа и т. д.

Антигемофильный глобулин. Останавливает кровотечение у больных гемофилией, в организме которых он отсутствует. Он быстро разрушается в консервированной крови и содержится в свежезаготовленной, а также в особо приготовленной антигемофильной плазме и в препаратах фибриногена.

Фибринолизин. Существуют заболевания при которых нарушения свертываемости крови ведут к кровоточивости. Но существуют некоторые болезненные состояния, в возникновении которых играет роль повышенная свертываемость.

Если переливание крови, плазмы и некоторых ее препаратов оказывает хорошее кровоостанавливающее действие, то имеется и такой белковый ферментативный препарат крови, как фибринолизин, который уменьшает свертывание, растворяет свежие фибриновые сгустки и применяется в лечении от тромбозов: при тромбофлебитах, инфаркте, тромбозах, легочной артерии, мозговых и периферических сосудов.

В медицинской практике широко используется отдельно выделенный один из компонентов сывороточных белков — гамма-глобулин, обладающий защитными свойствами: с ним связывают образование антител. Поэтому этот препарат, повышающий сопротивляемость организма, с успехом применяется не только при разнообразных инфекционно-воспалительных процессах, но и профилактически у здоровых людей, соприкасающихся с некоторыми инфекционными больными (корь, гепатит и др.).

Несколько слов о гамма-глобулинах направленного действия

У доноров на введение ослабленных, абсолютно безвредных микробов вырабатываются антитела. Взятая у них в определенные сроки кровь богата такими антителами. Приготовленный из этой крови гамма-глобулин обладает специфической направленностью действия против соответствующих микробов.

И в тех случаях, когда с помощью бактериологического исследования удается распознать возбудителя инфекции наряду с применением антибиотиков с успехом используются специфические гамма-глобулины (противокоревой, противостафилококковый, противогриппозный, противококлюшный и др.). Применение противостафилококкового гамма-глобулина иногда оказывает при стафилококковом сепсисе почти чудодейственный эффект.

Как получают плазму крови: плазмаферез

Компоненты и препараты крови, о которых шла речь, могут понадобиться в любое время суток, в любом уголке страны, и для того, чтобы быть всегда «начеку», ученые создали условия, при которых они могут храниться длительное время и при этом биологические, функциональные свойства их сохраняются.

Необходимость удовлетворения растущих потребностей лечебных учреждений в плазме и ее препаратах заставило ученых искать пути получения больших количеств плазмы без вреда для донора. Теперь широко применяется так называемый плазмаферез. Его сущность заключается в разделении полученной от донора крови на плазму и форменные элементы (путем центрифугирования) и возвращении обратно донору эритроцитов.

Дело в том, что хотя кроветворные органы при взятии крови у донора восполняют потерю эритроцитов, но это занимает известное время и для полной безвредности кроводачи у каждого донора берут кровь не чаще пяти раз в год.

Всего за год можно от одного донора получить не более 1 литра плазмы. Если же вернуть донору эритроциты, то он теряет только плазму, а восстановление ее составных частей (в основном белков) при здоровой печени занимает всего несколько дней (а донорами могут быть только вполне здоровые люди!).

Поэтому процедуру плазмафереза можно повторять каждые 1—2 недели и за год получить 6—7 литров плазмы от одного донора без всякого вреда для его здоровья. Это значительно увеличивает ресурсы для заготовки препаратов из плазмы.

” data-medium-file=”https://unclinic.ru/wp-content/uploads/2019/06/plazmaferez.jpg” data-large-file=”https://unclinic.ru/wp-content/uploads/2019/06/plazmaferez.jpg” loading=”lazy” src=”https://unclinic.ru/wp-content/uploads/2019/06/plazmaferez.jpg” alt=”Плазмаферез” width=”900″ height=”600″ srcset=”https://unclinic.ru/wp-content/uploads/2019/06/plazmaferez.jpg 900w, https://unclinic.ru/wp-content/uploads/2019/06/plazmaferez-768×512.jpg 768w” sizes=”(max-width: 900px) 100vw, 900px” title=”Компоненты и препараты крови, кровезаменители”> Плазмаферез

Искусственные кровезаменители

Большим достижением медицины является открытие и применение искусственных кровезаменителей, т. е. жидкостей, введение которых может в одних случаях заменить переливание крови, а в других временно его отсрочить. Конечно, полностью кровь не может быть заменена ни плазмой, ни каким-либо из кровезамещающих растворов, потому что в них отсутствуют переносчики кислорода — эритроциты.

Однако применение некоторых кровезаменителей может вывести больного или раненого из тяжелого шокового состояния даже при большой кровопотере. Этим устраняется непосредственная угроза для его жизни. Переливание крови, если оно все же требуется, может в таком случае быть отложено.

  • Солевые растворы. Предложенные с этой целью солевые растворы содержат все те соли, которые обычно входят в состав плазмы крови. В связи с тем, что солевые растворы довольно быстро покидают сосудистое русло, для более длительного их пребывания в крови больного к ним прибавляются коллоидные вещества. Исключительно ценным и важным для практики является синтетический, высокомолекулярный кровезаменитель — полиглюкин. Введение полиглюкина повышает кровяное давление и надежно выводит из шокового состояния при травматическом, послеоперационном и ожоговом шоках и при острой кровопотере.
  • Поливинилпирролидон. При интоксикациях, вызванных отравлениями, инфекциями или ядами, хорошее действие оказывает поливинилпирролидон. Препарат поливинилпирролидона — гемодез — применяется при токсических формах острых желудочно-кишечных заболеваний (диспепсии, дизентерии, пищевом отравлении), тяжелых ожогах, непроходимости кишечника, токсикозах беременных, некоторых инфекциях и отравлениях.
  • Белковые гидролизаты. При состояниях белковой недостаточности, о которой мы говорили раньше, переливание плазмы и ее препаратов иногда может быть заменено вливаниями так называемых белковых гидролизатов. Они представляют собой продукты обработки белков различного происхождения не только крови животных, но и, например, белка молока—казеина.

Гидролизаты содержат не целые белки, а полученные путем гидролиза составные их части— аминокислоты. Из них организм строит (синтезирует) собственные белки. Они могут вводиться в больших количествах и покрывать тяжелую недостачу белков или даже на время удовлетворять потребность организма в пищевых белках.

Поэтому гидролизат казеина с успехом применяется при заболеваниях или операциях, повлекших за собой прекращение или затруднение приема пищи через рот (ожоги глотки и пищевода, вмешательства на пищеводе и желудочно-кишечном тракте, челюстно-лицевые операции), а также при подготовке к операциям ослабленных больных, в послеоперационном периоде и др.

Переливание не донорской крови: утильная, плацентарная, фибринолизная кровь

Конечно, ни плазма, ни кровезаменители не могут целиком заменить переливания крови, так как в них не содержатся переносчики кислорода — эритроциты, введение которых раненому, больному необходимо при обильной кровопотере или тяжелом хроническом малокровии.

Русским ученым принадлежит заслуга использования для переливания не донорской крови. С. И. Спасокукоцкий первый, в 1938 г., выдвинул эту идею и предложил пользоваться так называемой «утильной» кровью (источником ее получения могут служить кровопускания, производимые с лечебной целью, у перенесших закрытую травму черепа, у некоторых сердечных больных и др.).

Идея С. И. Спасокукоцкого оказалась весьма плодотворной, но использование такого источника получения не донорской крови не вошло в широкую практику, встретив некоторые затруднения. М. С. Малиновский в 1933 г. предложил брать для переливания плацентарную кровь, т. е. ту, что можно взять из последа (плаценты) после родов.

Ученые и врачи Санкт-Петербурга (тогда Ленинграда) и других городов страны осуществили множество переливаний плацентарной крови еще в довоенное время, но повсеместного распространения этот метод не получил. Главным образом из-за трудности уберечь плацентарную кровь от попадания в нее инфекции в момент извлечения. Ныне плацентарная кровь весьма широко используется с целью получения весьма ценных лечебных препаратов: протеина, гамма-глобулина и др.

Мысль использовать для переливаний кровь погибших, что было подкреплено целой серией убедительных опытов на животных, принадлежит В. И. Шамову (1928 г.) и С. С. Юдину. Выдающийся ученый, хирург С. С. Юдин загорелся смелой идеей: «Кровью мертвых лечить живых»; он осуществил и внедрил ее в лечебную практику (1933 г.) и вместе со своими сотрудниками (М. Г. Скундина, Р. Г. Сакаян и другие) многое сделал в этом направлении.

В чем суть такого метода? Кровь, взятая в первые шесть часов после внезапной гибели от несчастного случая (закрытой травмы) или мозгового удара, сохраняет все ценные биологические свойства, по существу является живой. Исходя из этого переливание ее применяется в хирургии, а впоследствии вошло и в терапевтическую практику.

Ученые сделали следующее интересное наблюдение. Такая кровь, набранная в сосуд без противосвертывающего вещества, либо вовсе не свертывается, либо, сначала свернувшись, затем вновь переходит в жидкое состояние. Объясняется это происходящим в ней фибринолизом.

Иногда извлеченную посмертно кровь называют «фибринолизной» и применяют без лротивосвертывающих веществ. Совершенно ясно, что получение ее и использование находятся под самым жестким и тщательным контролем, гарантирующим полную безвредность для реципиента.

Теперь, когда различные органы погибших современная наука все шире использует для спасения живых, уже не кажется удивительным переливание подобной крови. И следует подчеркнуть, что сама эта идея была впервые осуществлена в нашей стране еще в середине прошлого века.

Как переливание крови явилось первой успешной пересадкой живой ткани другому человеку, так и переливание фибринолизной крови — первым удачным использованием для этой цели тканей и органов умершего.

Как быстро восстанавливается кровь у донора

Обычно к концу первых суток после отбора крови у донора восполняется объем крови. Это происходит в результате перехода в кровяное русло жидкости из тканей и мобилизации крови из резервов.

Переливание крови – донор

Переливание крови – донор

” data-medium-file=”https://unclinic.ru/wp-content/uploads/2019/06/perelivanie-krovi-donor.jpg” data-large-file=”https://unclinic.ru/wp-content/uploads/2019/06/perelivanie-krovi-donor.jpg” loading=”lazy” src=”https://unclinic.ru/wp-content/uploads/2019/06/perelivanie-krovi-donor.jpg” alt=”Переливание крови – донор” width=”900″ height=”600″ srcset=”https://unclinic.ru/wp-content/uploads/2019/06/perelivanie-krovi-donor.jpg 900w, https://unclinic.ru/wp-content/uploads/2019/06/perelivanie-krovi-donor-768×512.jpg 768w” sizes=”(max-width: 900px) 100vw, 900px” title=”Компоненты и препараты крови, кровезаменители”> Переливание крови – донор

Сразу же после отбора крови усиливается деятельность органов кроветворения: число эритроцитов в крови начинает увеличиваться, а процессы разрушения приостанавливаются. Постоянное обновление красных кровяных клеток способствует сохранению неизменного состава крови.

Обновление эритроцитов — естественный процесс. Каждую минуту из костного мозга в кровь поступает около 115 миллионов молодых красных кровяных клеток. Соответствующее число отживших эритроцитов удаляется из кровеносного русла. Частично они поглощаются клетками селезенки и печени, частично используются костным мозгом при образовании новых красных кровяных клеток.

Компенсаторные возможности костного мозга очень велики. При большой потере крови интенсивность образования эритроцитов возрастает по сравнению с нормой в 6—7 раз.

Если донор сдал 225 миллилитров крови (то есть половинную дозу), процесс восстановления ее состава заканчивается примерно на пятнадцатый день. Если была взята полная доза — 450 миллилитров, то, как показали исследования, число эритроцитов возвращается к исходному уровню через семь-восемь недель. Важно подчеркнуть, что у доноров, сдающих кровь повторно, процессы регенерации (восстановления) происходят быстрее.

Таким образом, здоровый человек без всякого для себя вреда может отдавать кровь 5 раз подряд, соблюдая интервал в 60 дней, потом необходим трехмесячный перерыв.

Тысячи доноров, сохраняя отменное здоровье, имеют стаж двадцать — двадцать пять лет. Они пользуются заслуженным почетом в нашей стране, и каждый из них по праву может гордиться спасением многих и многих жизней.

Донорство должно быть основано на твердом принципе: максимальная польза больному и никакого вреда тому, кто дает свою кровь.

Белковые фракции

Общий белок сыворотки состоит из смеси белков с разной структурой и функциями. Разделение на фракции основано на разной подвижности белков в разделяющей среде под действием электрического поля Методом электрофореза выделяют следующие фракции:
альбумины и -альфа1-, альфа2-, бета- и гамма — глобулины.

ГЛОБУЛИНЫ
В отличие от альбуминов глобулины не растворимы в воде, а растворимы в слабых солевых растворах.

a1-ГЛОБУЛИНЫ
В эту фракцию входят разнообразные белки. a1-глобулины имеют высокую гидрофильность и низкую молекулярную массу. Поэтому при патологии почек легко теряются с мочой. Однако их потеря не оказывает существенного влияния на онкотическое давление крови, потому что их содержание в плазме крови невелико.

Функции a1-глобулинов:

  1. Транспортная. Транспортируют липиды, при этом образуют с ними комплексы — липопротеины. Среди белков этой фракции есть специальный белок, предназначенный для транспорта гормона щитовидной железы тироксина — тироксин-связывающий белок.
  2. Участие в функционировании системы свертывания крови и системы комплемента — в составе этой фракции находятся также некоторые факторы свертывания крови и компоненты системы комплемента.
  3. Регуляторная функция. Некоторые белки фракции a1-глобулинов яляются эндогенными ингибиторами протеолитических ферментов. Наиболее высока в плазме концентрация a1-антитрипсина. Содержание его в плазме от 2 до 4 г/л (очень высокое), молекулярная масса — 58-59 кДа. Главная его функция — угнетение эластазы — фермента, гидролизующего эластин (один из основных белков соединительной ткани). a1-антитрипсин также является ингибитором протеаз: тромбина, плазмина, трипсина, химотрипсина и некоторых ферментов системы свертывания крови. Количество этого белка увеличивается при воспалительных заболеваниях, при процессах клеточного распада, уменьшается при тяжелых заболеваниях печени. Это уменьшение — результат нарушения синтеза a1-антитрипсина, и связано оно с избыточным расщеплением эластина. Существует врожденная недостаточность a1-антитрипсина. Считают, что недостаток этого белка способствует переходу острых заболеваний в хронические.

a2-ГЛОБУЛИНЫ.
Высокомолекулярные белки. Эта фракция содержит регуляторные белки, факторы свертывания крови, компоненты системы компемента, транспортные белки. Сюда относится и церулоплазмин. Этот белок имеет 8 участков связывания меди. Он является переносчиком меди, а также обеспечивает постоянство содержания меди в различных тканях, особенно в печени. Гаптоглобины. Содержание этих белков составляет приблизительно 1/4 часть от всех a2-глобулинов. Гаптоглобин образует специфические комплексы с гемоглобином, освобождающимся из эритроцитов при внутрисосудистом гемолизе. Вследствие высокой молекулярной массы этих комплексов они не могут выводиться почками. Это предотвращает потерю железа организмом.

Комплексы гемоглобина с гаптоглобином разрушаются клетками ретикуло-эндотелиальной системы (клетки системы мононуклеарных фагоцитов), после чего глобин расщепляется до аминокислот, гем разрушается до билирубина и экскретируется желчью, а железо остается в организме, и может быть реутилизировано. К этой же фракции относится и a2-макроглобулин. Молекулярная масса этого белка 720 кДа, концентрация в плазме крови 1.5–3 г/л. Он является эндогенным ингибитором протеиназ всех классов, а также связывает гормон инсулин. Время полужизни a2-макроглобулина очень малое — 5 минут. Это универсальный “чистильщик” крови, комплексы “a2-макроглобулин-фермент” способны сорбировать на себе иммунные пептиды, например, интерлейкины, факторы роста, фактор некроза опухолей, и выводить их из кровотока.

С1-ингибитор — гликопротеид, является основным регуляторным звеном в классическом пути активации комплемента (КПК), способен угнетать плазмин, калликреин. При недостатке С1-ингибитора развивается ангионевротический отек.

b-ГЛОБУЛИНЫ
К этой фракции относятся некоторые белки системы свертывания крови и подавляющее большинство компонентов системы активации комплемента (от С2 до С7).

Основу фракции b-глобулинов составляют Липопротеины Низкой Плотности (ЛПНП), трансферин (белок-переносчик железа), гемопексин (связывает гем, что предотвращает его выведение почками и потерю), компоненты комплемента (участвующие в реакциях иммунитета), и часть иммуноглобулинов.

g-ГЛОБУЛИНЫ
В этой фракции содержатся в основном АНТИТЕЛА. Функция антител — защита организма от чужеродных агентов (бактерии, вирусы, чужеродные белки), которые называются АНТИГЕНАМИ.

Иммуноглобулины, (в порядке количественного убывания — IgG, IgA, IgM, IgE), функционально представляющих собой антитела, обеспечивающие гуморальную иммунную защиту организма от инфекций и чужеродных веществ.

Только IgG и IgM способны активировать систему комплемента. С-реактивный белок также способен связывать и активировать С1-компонент комплемента, но эта активация непродуктивна и приводит к накоплению анафилотоксинов. Накопившиеся анафилотоксины вызывают аллергические реакции.

К группе гамма-глобулинов относится также криоглобулины. Это белки, которые способны выпадать в осадок при охлаждении сыворотки. У здоровых людей их в сыворотке нет. Они появляются у больных с ревматическим артритом, миеломной болезнью.

Повышение уровня: Альбумин: .Дегидратация; Шок;

Фракция альфа1- глобулина: Беременность (3 триместр); Патология паренхимы печени; Острые и хронические воспалительные процессы (инфекции и ревматические заболевания); Опухоли; Травма и хирургические вмешательства; Прием андрогенов.

Фракция альфа 2-глобулина: Беременность; Нефротический синдром, Гепатит, Цирроз печени, Прием эстрогенов и оральных контрацептивов, Злокачественные опухоли, Некроз тканей, Хронический воспалительный процесс.

Фракция бета-глобулина: Беременность; Первичные и вторичные гиперлипопротеинемии; Моноклональные гаммапатии; Прием эстрогенов, Железодефицитная анемия (повышение трансферрина); Механическая желтуха.

Фракция гамма-глобулина: Хроническая патология печени (хронический активный гепатит, цирроз); .Хронические инфекции, саркоидоз, паразитарные инвазии; Аутоиммунные заболевания (ревматоидный артрит, системная красная волчанка); Лимфопролиферативные заболевания (миелома, лимфома, макроглобулинемия Вальденстрема).

Понижение уровня: Альбумин: Нарушения питания; Синдром мальабсорбции; Болезни печени и почек; Опухоли; Коллагенозы; Ожоги; Гипергидратация; Кровотечения; Анальбуминемия; Беременность.

Фракция альфа1-глобулина: Наследственный дефицит альфа1-антитрипсина; Болезнь Tangier.

Фракция альфа2-глобулина: панкреатит, ожоги, травмы; Снижение гаптоглобина (гемолиз различной этиологии, панкреатит, саркоидоз); Фракция бета-глобулина: Гипо-b-липопротеинемии; Дефицит IgA; Фракция гамма-глобулина: Иммунодефицитные состояния; Прием глюкокортикоидов; Беременность.

В чем особенность белков плазмы крови и их функции

Сахарный диабет (СД) представляет собой заболевание, проявляющееся ярким нарушением метаболизма, прежде всего углеводного и энергетического, сопровождающееся в конечном итоге дисбалансом всех функциональных систем организма. К таким нарушениям приводит абсолютная или относительная недостаточность инсулина, и как результат –хроническая гипергликемия. В соответствии с современными представлениями дефицит инсулина или инсулинорезистентность, длительная гипергликемия ведут к таким нарушениям на молекулярном уровне, как окислительный стресс и гликирование белков. Оба этих фактора ведут к изменению конформации белковых молекул и нарушению их функции, что и является молекулярной основой патогенеза поздних осложнений СД.

Метаболические нарушения при СД в сочетании с микро- и макроангиопатиями, нарушениями иммунологической реактивности, в том числе местной, приводят к изменениям в структуре эпидермиса, дермы, потовых железах, фолликулах. Эти изменения приводят к повышению риска развития дерматологической патологии у больных СД. И действительно к настоящему времени описано около 30 дерматозов, развивающихся на фоне, или реже предшествующих СД 2 типа. Одним из таких наиболее распространенных и тяжелых дерматозов является псориаз [3, 12, 13].

Одним из интересных направлений в прогнозировании течения заболеваний, оценке риска развития осложнений и контроле эффективности проводимой терапии является исследование конформационных изменений белков различных биожидкостей, прежде всего, плазмы или сыворотки крови. Белки ответственны за выполнение любого биологического процесса и являются необходимым компонентом жизни. Важнейшая биологическая роль протеинов связана с уникальностью пространственной структуры каждого индивидуального белка. Нарушение конформации белковой молекулы ведет к изменению ее функционирования: ослаблению, редко в условиях патологического процесса к усилению или к извращению ее действия. Степень выраженности подобных изменений может говорить о тяжести патологии, риске развития осложнений. Следует отметить широкий спектр процессов, приводящих к изменению пространственной структуры белков плазмы крови, это может быть и вышеупомянутое гликирование, повреждение белков активными формами кислорода, а также другими свободными радикалами и продуктами перекисного окисления биомолекул, связывание с тяжелыми металлами, другими биогенными элементами при нарушении металл-лигандного гомеостаза, взаимодействие с прочими лигандами, как экзогенными, так и эндогенными, при нарушении их гомеостаза, изменение характера среды (рН, ионной силы и т.д.), реакции изотопного обмена и многое другое. Вышесказанное хорошо подчеркивает универсальность нарушений трехмерной структуры белков, говорит о возможности применения их оценки в исследовании практически любых заболеваний [1, 2, 7, 8, 9, 10].

Целью настоящей работы являлось изучение конформационных изменений белков плазмы крови у больных СД 2 типа при сочетанном течении с псориазом.

Материалы и методы

Наблюдения были выполнены на базе ГБУЗ «Клинический кожно-венерологический диспансер» министерства здравоохранения Краснодарского края. Все пациенты c сахарным диабетом 2 типа и псориазом, которые дали согласие на участие в проведении данного исследования, проходили лечение в стационаре по основному заболеванию – псориаз. Первую группу составили пациенты с сахарным диабетом 2 типа при сочетанном течении псориаза (n = 30 человек), контрольную группу составили здоровые доноры (n = 30 человек).

Забор крови производился в утреннее время, натощак из локтевой вены. Объем забираемой крови 5 мл. Полученную цельную кровь центрифугировали в течение 15 минут при 3000 об./мин. Для дальнейшего исследования использовали надосадочную жидкость – плазму.

Концентрацию белка в плазме крови определяли по поглощению света образцом биожидкости в ультрафиолетовой области при 280 нм [5]. Определение концентрации сывороточного альбумина осуществляли унифицированным методом по реакции с бромкрезоловым зеленым [6].

Для оценки конформационных изменений белковых молекул измеряли собственную флуоресценцию плазмы крови, при длине волны возбуждения 270 нм, длине волны регистрации флуоресценции 330 нм. Также для косвенной оценки нарушений пространственной структуры белков проводили определение соотношения поверхностных (легко доступных) и скрытых (трудно доступных) тиоловых (-SH) групп белков с помощью 5,5’-дитиобис (2-нитробензойной) кислоты (ДТНБК, реактив Эллмана) [4, 11]. За поверхностные сульфгидрильные группы были приняты группы, прореагировавшие с реактивом Эллмана за первые 3 минуты, а скрытые за промежуток от 3 до 30 минуты. Изменения собственной флуоресценции говорят об изменениях в окружении остатков триптофана в белках, в гораздо меньшей степени об окружении тирозина и фенилаланина. Соотношение – поверхностные/скрытые SH-группы может говорить об изменении окружения исследуемых функциональных групп, выворачивании белковой глобулы. Оба метода применены для повышения общей информативности, так как отсутствуют какие-либо разработанные рекомендации по данному вопросу, а изменения белковых глобул могут затрагивать в большей или меньшей степени различные участки макромолекулы, что в одном из применяемых методов может не отразиться.

Статистическую обработку экспериментальных данных проводили в соответствии с принятыми методами вариационной статистики, с использованием критерия t-Стьюдента и программного обеспечения, находящегося в свободном доступе. Различия считали достоверными, если вероятность ошибки составляла р

Влияние компонентов плазмы крови на гликозилирование сывороточного альбумина человека

Полный текст:

  • Статья
  • Об авторе
  • Cited By

Аннотация

Изучено гликозилирование сывороточного альбумина человека (САЧ) с повышением концентрации глюкозы. Инкубационная среда содержала 5% САЧ и глюкозу в концентрациях 11, 22, 44 и 88 ммоль / л. Степень гликозилирования оценивали по конечному продукту, фруктозамину. Была обнаружена линейная корреляция между концентрацией глюкозы и фруктозамином. Добавление в инкубационную среду нативной плазмы человека нормального субъекта или диабетика с заболеванием типа I (50% от исходного объема) надежно ингибировало гликозилирование. Были идентифицированы термостабильные низкомолекулярные вещества, которые вызывают задержку гликозилирования: креатинин, мочевая кислота и аргинин. Добавление этих соединений в физиологических концентрациях достоверно снижало гликозилирование САЧ. Следовательно, мы нашли компоненты системы защиты плазмы крови, которые предотвращают образование фруктозамина при гипергликемии.

Ключевые слова

Для цитирования:

Лебедева E.А. Влияние компонентов плазмы крови на гликозилирование сывороточного альбумина человека. Проблемы Эндокринологии. 1996;42(3):32-34. https://doi.org/10.14341/probl12043

For citation:

Lebedeva Y.A. Effect of blood plasma components on human serum albumin glycosylation. Problems of Endocrinology. 1996;42(3):32-34. (In Russ.) https://doi.org/10.14341/probl12043

Гликозилирование белков — это неферментативный процесс присоединения глюкозы к аминогруппам белка [3, 5], неспецифическая реакция, в которую вовлекаются белки сыворотки крови, структурные белки базальных мембран (коллаген, эластин, тубулин), белки мембран эритроцитов и др. Гликозилирование изменяет физико-химические и физиологические свойства белка. По современным представлениям, гликозилирование является пусковым механизмом в формировании диабетических ангиопатий [1, 7, 15]. На процесс гликозилирования влияют концентрация глюкозы и время экспозиции (наиболее значительно через 20 и более дней после начавшегося повышения концентрации глюкозы крови).

Белки плазмы крови подвергаются интенсивному гликозилированию при сахарном диабете [6, 9]. Сумма гликозилированных белков плазмы называется фруктозамином. Среди них доминирует альбумин, который составляет более 60% от всех сывороточных белков [2].

Реакция гликозилирования может успешно протекать не только в организме, но и в пробирке. Описаны методики гликозилирования сывороточного альбумина человека (САЧ) в термостате при 37°С, где образование фруктозамина наблюдали уже через 7 дней [14]. Гликозилирование может происходить и при инкубации среды, содержащей глюкозу и белок, при 1—2°С [12]. Инкубация САЧ в присутствии глюкозы в опытах in vitro позволяет определить степень гликозилирования путем изучения концентрации конечного продукта — фруктозамина.

Целью работы было изучение влияния на процесс гликозилирования веществ, содержащихся в нативной плазме крови человека.

Материалы и методы

Содержание фруктозамина в плазме крови или в искусственной среде определяли методом, основанным на способности фруктозамина восстанавливать тетразолий нитросиний в щелочной среде [5]. 0,1 мл исследуемой жидкости вносили в среду, содержащую 57 мкмоль тетразолия нитросинего, и добавляли карбонатный буфер pH 10,35. Смесь инкубировали в течение 10 мин на водяной бане при 37°С, а затем измеряли плотность с помощью фотоэлектроколориметра при длине волны 530 нм. В качестве стандарта были взяты образцы САЧ, которые инкубировали с глюкозой в концентрации 44 ммоль/л в течение 30 дней при 1—2”С. При этом САЧ был полностью гликозилирован, а содержание фруктозамина — максимальным. В качестве исходного реагента был взят САЧ фирмы ”Re- anal”. Из смеси нескольких образцов полностью гликозилированного САЧ были сделаны разведения и построен калибровочный график, который позволял выразить степень гликозилирования белка в микромолях полностью гликозилированного САЧ. График предусматривал, что содержание фруктозамина в нативном неинкубированном САЧ равно нулю.

Среда для инкубации в холодильнике при 1—2″С содержала 1 мл% САЧ, глюкозу в конечной концентрации 44 ммоль/л или в ряде опытов в концентрации 11, 22, 88 ммоль/л. Смесь была приготовлена на фосфатном 0,05 М буфере и находилась в холодильнике. Ее анализировали на содержание фруктозамина на 5, 10, 15 и 20-й день от начала инкубации.

В среду инкубации в отдельных опытах добавляли аминокислоты, мочевину, мочевую кислоту, креатинин в концентрации 10 _3 М. Вначале проводили скрининговые опыты, позволяющие приблизительно оценить влияние этих соединений на процесс гликозилирования и выбрать из них наиболее эффективные, а затем ставили опыты с большим числом наблюдений для статистической обработки результатов. Сначала для всех изучаемых веществ применяли концентрацию 10 _3 М, она позволяла сравнительно оценить влияние всех соединений на гликозилирование. Однако в заключительных иссле-

Гликозилирование 5% САЧ при различных концентрациях глюкозы в среде в течение 28 дней.

По оси ординат — концентрация полностью гликозилированного САЧ (в мкмоль/л); по оси абсцисс — время от начала инкубации (в сут). 1 — концентрация глюкозы 11 ммоль/л, 2—22 ммоль/л, 3 — 44 ммоль/л, 4—88 ммоль/л.

дованиях были использованы те концентрации, в которых эти вещества находятся в плазме крови.

Результаты и их обсуждение

В I серии опытов изучали гликозилирование САЧ различными концентрациями глюкозы. Из рисунка видно, что при концентрации глюкозы 11 ммоль/л происходит образование незначительного количества полностью гликозилированного САЧ в среде. Концентрации глюкозы 22, 44, 88 ммоль/л к 28-му дню инкубации значительно повышают содержание гликозилированного САЧ, причем чем больше концентрация глюкозы, тем быстрее наступает гликозилирование. Данные отдельных опытов, приведенные на рисунке, позволили судить о выраженности процесса гликозилирования при концентрации глюкозы в среде 44 ммоль/л, которая и была взята в последующих опытах как эталон для дальнейших экспериментов.

Во II серии опытов в среду инкубации, содержащую 5% САЧ и 44 ммоль/л глюкозы, была добавлена плазма крови здорового человека и плазма больного диабетомв стадии декомпенсации заболевания в количестве 50% от объема инкубационной среды. Инкубацию проводили в течение 14 дней в холодильнике.

Из табл. 1 следует, что процесс гликозилирования идет во всех трех пробах по сравнению с инкубированным САЧ. В среде с добавлением к САЧ глюкозы процесс гликозилирования значителен (273,3 ± 6,6 мкмоль/л), в то время как при добавлении плазмы здорового человека величина гликозилирования снижается и составляет лишь 19,0 ±1,3 мкмоль/л (р2 3 М вызывать снижение гликозилирования. Были изучены следующие вещества: глутаминовая кислота, лейцин, лизин, гистидин, цистеин, аргинин, а также мочевина, мочевая кислота, креатинин. По результатам ориентировочного исследования 3 соединения обнаружили тенденцию к подавлению процесса гликозилирования. Поэтому в последующем они были более тщательно исследованы в сериях опытов, позволяющих провести статистическую обработку данных. Аргинин статистически достоверно угнетал процесс гликозилирования САЧ — с 151 ± 18,6 до 31,3 ± 7,9 мкмоль/л (р _3 М. В последующем мы изучили действие мочевой кислоты и аргинина на гликозилирование при более низкой концентрации глюкозы (17 ммоль/л), которая часто регистрируется у больных сахарным диабетом (табл. 2).

Влияние плазмы здорового человека и плазмы больного сахарным диабетом на гликозилирование САЧ при концентрации глюкозы в среде 44 ммоль/л в течение 14 дней

Статиста- ческий показатель

Концентрация полностью гликозилированного САЧ (в мкмоль/л) в среде, содержащей

Параграф 89 белки и пептиды плазмы крови

Составитель текста – Анисимова Е.С..
Авторские права защищены (продавать текст нельзя). Курсив не зубрить.
Замечания можно присылать по почте: exam_bch@mail.ru
https://vk.com/bch_5

ПАРАГРАФ 89:
«Белки и пептиды плазмы крови»

О функциях глобулинов см. также п.39. О пептидах см. п. 56.

Содержание параграфа:
Пептиды плазмы.
Гемоглобин
Функциональные и нефункциональные белки плазмы.
Фракции белков плазмы крови.
Отклонения содержания белков плазмы от нормы.
Дис/протеин/емии.
Гипо/альбумин/емии.
Ф У Н К Ц И И белков плазмы.

К пептидам, которые есть в крови в норме, относятся
ангиотензин (8 аминоацилов) и ряд других белково-пептидных гормонов, в составе которых менее 100 аминоацилов:
инсулин (51 аминоацил), глюкагон (29 аминоацилов) и т.д.. Но свойствам инсулин является типичным белком.

Гемоглобин
не относится к белкам плазмы крови (БПК) –
в норме он находится внутри эритроцитов (п.121),
а в плазму попадает при их разрушении (при гемолизе);
выполнять функцию транспорта кислорода к клеткам гемоглобин вне эритроцитов не способен.

Функциональные и нефункциональные белки плазмы.

Существуют белки плазмы, которые должны находиться в плазме и выполнять в ней функции –
их называют функциональными белками плазмы,
их дефицит в плазме может привести к патологии
(например, дефицит некоторых факторов свертывания приводит к гемофилии).

Но в плазме бывают белки, которые не выполняют в плазме никаких функций, потому их называют нефункциональными;
нефункциональные белки попадают в плазму из клеток при разрушении клеток
(то есть нефункциональные белки плазмы в норме являются внутриклеточными).

Попадание в плазму некоторых нефункциональных белков опасно:
например, попадание в кровь трипсина при панкреатите
(п.62) вследствие разрушения ПЖЖ трипсином) приводит к развитию коллапса.

Некоторые нефункциональные белки используются для диагностики
повреждений тех органов, из которых они поступили в кровь
(т.к. присутствие внутриклеточного белка данного органа в крови – результат и признак повреждения органа):
например, повышенная активность креатин/киназы в крови
может указывать на инфаркт (см. и другие примеры энзимодиагностики).

Фракции белков плазмы крови.

Белки плазмы крови делятся на две фракции:
альбумины и глобулины.

Глобулины делятся на 4 подфракции: ;1, ;2, ;, ;.

Альбуминов больше, чем глобулинов (57% против 43%),
а среди глобулинов преобладают ;-глобулины.

К фракции ;-глобулинов относятся антитела;
антитела синтезируются зрелыми В-лимфоцитами
(которые называются плазмоцитами).

Белково-пептидные гормоны, находящиеся в плазме,
синтезируются и секретируются эндокринными клетками
(например, ТТГ – гипофизом).

Остальные белки плазмы синтезируются в печени
(поэтому при повреждении печени количество БПК может снижаться).

Отклонения содержания белков плазмы от нормы.

Нормальное количество БПК – 63-83 г/л (всего – около 200г).
Снижение [БПК] называется гипо/протеин/емией,
а повышение – гипер/протеин/емией.

И снижение, и увеличение концентрации белков плазмы крови
указывает на наличие патологии в организме.

Изменение концентрации белков плазмы крови
может быть обусловлено
1) как изменением количества БПК,
2) так и изменением содержания воды в сосудах.
Например, при обезвоживании организма количество воды в сосудах меньше нормы,
и в этом случае нормальное количество БПК может сопровождаться повышенной концентрацией БПК.
Далее речь идёт об изменениях концентраций белков в плазме при нормальном количестве воды в плазме.

При воспалениях и патологии печени [альбуминов] снижается
(повышение концентрации альбуминов называется гипо/альбумин/емией),
а [глобулинов] повышается
(повышение концентрации глобулинов называется гипер/глобулин/емией).

Сочетание снижения альбуминов и повышения глобулинов называется дис/протеин/емией.
При воспалениях увеличивается концентрация ; глобулинов (;1 и ;2),
а при патологии печени увеличивается концентрация ; и ; глобулинов.
При остром воспалении нет повышения концентрации ;-глобулинов,
а при хроническом воспалении концентрация ;-глобулинов увеличена.

Снижение концентрации альбуминов наблюдается
не только при воспалениях и патологии печени, но и в других ситуациях.

Причины гипо/альбумин/емий можно разделить на три группы:
1) обусловленные снижением синтеза альбуминов (печенью),
2) обусловленные выходом альбуминов из сосудов,
3) обусловленные повышенным разрушением альбуминов.

Синтез альбуминов снижается:
1.1) при патологии печени (печень является местом синтеза большинства БПК),
1.2) при воспалительных и лихорадочных состояниях,
1.3) при дефиците «сырья» для их синтеза – аминокислот.

Дефицит аминокислот бывает:
1) при голодании (общем или белковом) или
2) при нарушении усвоения аминокислот при патологии ЖКТ
(при дефиците ферментов при патологии ПЖЖ или кишечника
или при нарушении всасывания при патологии кишечника).

Потеря белков из сосудов бывает при:
1) при повышенной проницаемости сосудов,
2) при патологии ЖКТ и почек
В последнем случае белки оказываются в моче,
присутствие белков в моче называется протеинурией;
протеинурия – признак повреждения почек,
здоровые почки не пропускают белки плазмы в мочу,
за исключение панкреатической амилазы, которой в норме в крови нет – п.62.

Повышенное разрушение альбуминов бывает при активации тканевых пептидаз.

При голодании количество белков снижается потому, что
не из чего синтезировать белки
и потому что белки используются в качестве питания
(используются для глюконеогенеза – п.33).

Ф У Н К Ц И И белков плазмы крови.

Есть функции, которые выполняются всеми БПК,
а есть функции, которые выполняются только определенными белками.

О б щ и е функции БПК.

1. БПК создают онкотическое давление –

это означает, что БПК участвуют в задерживании воды в сосудах.
Другие вещества плазмы тоже участвуют в удерживании воды в сосудах,
то есть создают осмотическое давление.
Определение: онкотическое давление – это доля осмотического давления,
обусловленная белками плазмы крови.
Распределение воды между тканями и сосудами
зависит от содержания осмотически активных веществ
(то есть веществ, способных «притягивать» воду туда, где вещества находятся)
в тканях и в сосудах
(к числу осмотически активных веществ относятся белки, глюкоза, ионы):
если количество осмотически активных веществ в сосудах снижается,
то часть воды перемещается из сосудов в ткани – это приводит к отекам.
И, наоборот, при увеличении содержания осмотически активных веществ в сосудах
часть воды переходит их тканей в сосуды,
чтобы «растворять» там повышенное количество осмотически активных веществ.

При снижении количества БПК онкотическое давление снижается,
это приводит к тому, что увеличивается количество воды в тканях и возникают отеки.

2. Питательная функция белков плазмы крови.

БПК могут расщепляться до АК, которые поступают в клетки.
В клетках АК могут
1) использоваться для синтеза белков,
2) могут катаболизироваться и давать АТФ и тепло (при дефиците глюкозы и жирных кислот),
3) в печени могут превращаться в глюкозу (при гипогликемии, в печени).

Питание белками плазмы снижает их количество в крови,
приводит к гипо/протеин/емии,
проявляется отеками, функции белков плазмы крови снижаются.

3. Буферная функция.

Участие в регуляции рН
(в поддержании кислотно-щелочного равновесия, в [Н+]= [протонов]).

Регуляция рН имеет очень большое значение:
значительные отклонения от нормального рН крови (от слегка щелочного рН)
приводят к смерти (например, при плохо контролируемом сахарном диабете).

Белки плазмы крови способны
присоединять к себе Н+ (то есть быть акцепторами протонов – основаниями)
при избытке протонов (то есть при ацидозе) –
за счет наличия в белках радикалов, способных протонироваться:
это радикалы лизина, аргинина, гистидина (радикалы оснОвных АК).

Белки плазмы крови способны
быть источниками Н+ (то есть быть кислотами)
при дефиците Н+ (то есть при алкалозе) –
за счет наличия радикалов, способных быт источниками протонов (кислотами):
радикалы Глу и Асп с СООН группами.
Наряду с БПК существуют гемоглобиновый, фосфатный и бикарбонатный буферы (см. курс физиологии).

4. С БПК связана вязкость крови.
Чем больше [БПК], тем больше вязкость.

С п е ц и а л и з и р о в а н н ы е функции БПК.

5. Определенные белки плазмы крови участвуют в сворачивании крови –
эти БПК называют факторами свертывания крови.

Их дефицит приводит к снижению способности крови сворачиваться,
что угрожает смертью от потери крови.
При гемофилии
причиной дефицита факторов свертывания являются мутации генов
(гемофилия относится к первичным, врожденным протеинопатиям – п.57).
Причиной нарушения свертывания может быть
авитаминоз витамина К (приобретенная протеинопатия, вторичная).

6. Ряд БПК участвует в снижении свертываемости крови
(факторы противосвертывающей системы крови).
Дефицит факторов противосвёртывающей системы приводит к тромбозам.

Существуют белки плазмы, которые способны ингибировать протеазы
и тем самым спасают организм от разрушения его белков протеазами.

Ингибиторы протеазы называются анти/протеазами.
Примеры антипротеаз:
;1-антитрипсин = ;1-антипептидаза,
;2-макроглобулин.

Антитрипсин способен наряду с другими пептидазами ингибировать трипсин;
это важно при появлении трипсина в крови при панкреатите,
т.к. появление трипсина в крови приводит к коллапсу (см. п. 62).
Известно, что дефицит антипротеаз приводит к смерти
от цирроза и фиброза легких;
причиной дефицита антипротеаз являются мутации их генов.
Спасти человека в этом случае может пересадка ему печени человека с нормальными генами антипротеаз.

8. Белки острой фазы.

Концентрация в крови ряда белков плазмы крови
увеличивается при острых состояниях –
эти белки называют белками острой фазы.

Примеры белков острой фазы:
С-реактивный белок, фибриноген, антитрипсин, гаптоглобин (связывает гемоглобин при выходе гемоглобина из эритроцитов при гемолизе, это позволяет предотвратить потерю железа организмом).

9. Транспортная функция белков плазмы.

Основные транспортные белки плазмы – это альбумины.
Они связывают в плазме и транспортируют:
жирные кислоты (образующиеся при расщеплении жира в адипоцитах, в ЛПОНП и хиломикронах),
свободный билирубин (от клеток системы макрофагов к гепатоцитам, см. 118,
ионы,
лекарства (гидрофобные).

Транспортер железа называется трансферрином (он же транспортирует хром),
транспортер меди – церулоплазмином,
транспортер В12 (кобаламина) – транскобаламином,
транспортер Hb – гаптоглобином.

Есть специальные транспортеры для гидрофобных гормонов (например, для стероидов) и витаминов (А, Д).
Дефицит транспортных белков нарушает транспорт соответствующих веществ
и может привести к патологии.
Например, дефицит транспортеров витаминов
может привести к симптомам гиповитаминозов,
дефицит альбуминов:
– приводит к увеличению поступления свободного билирубина в клетки
(это нарушает состояние клеток и самочувствие) и
– требует снижения доз лекарств.

10. Участие в регуляции артериального давления:

Белки систем брадикинина и антиотензина
(пре/кинины, пре/калликреин, ангиотензиноген)
участвуют в регуляции артериального давления
(брадикинин снижает, ангиотензин увеличивает)
за счет влияния на тонус сосудов и объем плазмы крови.

Кроме этого, брадикинин увеличивает проницаемость сосудов
и вследствие этого способствует воспалительным, иммунным и аллергическим реакциям.
Ангиотензин влияет на водно-минеральный обмен:
способствует экскреции натрия, хлорида, воды и снижает экскрецию калия.
При этом сам ангиотензин является пептидом, а не белком.

11. Гуморальный иммунитет.

Антителами и белками системы комплемента обусловлен гуморальный иммунитет.
Антитела отвечают за распознавание антигенов,
связывают их и способствуют уничтожению антигенов иммунными клетками.

Белки системы комплемента участвуют в уничтожении опасных (например, бактериальных) клеток.
Антитела образуют фракцию ;-глобулинов, секретируются плазмоцитами. Дефицит антител снижает иммунитет.

12. Апобелки липопротеинов (п.49) иногда считаются белками плазмы крови
и относятся к фракции глобулинов.
Апобелки образуются в кишечнике, как и сами хиломикроны;
в плазме в хиломикроны могут поступать апобелки из других липопротеинов, синтезированные в печени.
Функция липопротеинов в норме – транспорт липидов:
жира, холестерина, фосфолипидов и витамина Е в ткани
и (для ЛПВП) очистка тканей от избытка холестерина и тем самым предотвращение атеросклероза.

Кроме белков, растворенных в плазме, есть белки, связанные с мембранами клеток эндотелия сосудов.
Они тоже выполняют в плазме важные функции. Например, липопротеин/липаза (см. п. 49-51).

Ссылка на основную публикацию