Метод подсчета количества эритроцитов в крови с помощью камеры Горяева

Метод подсчета количества эритроцитов в крови с помощью камеры Горяева

Принцип прямого счисления заключается в следующем: разбавить кровь в пипетке Potain (предусмотренной красным шариком для эритроцитов и белым — для лейкоцитов и тромбоцитов), при этом разбавляющая жидкость разная, соответственно виду клеток.

К разбавляющим жидкостям относятся:
а) для эритроцитов:
— хлорид натрия —1 г.
— сульфат натрия — 5 г.
— сублимат — 0,5 г.
— дистилированная вода — 200 мл.

б) для лейкоцитов:
— ледяная укусусная кислота — 2 мл.
— 1% метиленблау — 1 капля
— дистилированная вода — до 100 мл.

в) для тромбоцитов: — щавелевокислый аммоний — 1 г.
— Nа2ЭДТА — 0,01 г.
— дистилированная вода – 100 мл.

Пипетки Potain должны быть чистыми, совершенно сухими и цельными. До потребления пипетку испытать на проницаемость путем вдувания воздуха, после использования ее следует промыть проточной водой, с помощью трубки для вакуума, затем дистилированной водой. Через несколько дневные интервалы держать пипетку по 24 часа в серохроми-стой смеси, затем промывать тщательно проточной и дистилированной водой.

Высушивать в сушильном шкафу, при температуре 180°. Когда требуется срочное высушивание, пипетку промывать спиртом, а затем эфиром.

Разжижение крови. Набрать в пипетку кровь до деления 0,5, затем разбавляющую жидкость до деления 101 — в пипетку с красным шариком (для счисления эритроцитов) и до деления 11 в пипетку с белым шариком (для счисления лейкоцитов и тромбоцитов). Получаются следующие растворы: 1/200 для эритроцитов и 1/20 для лейкоцитов и тромбоцитов.

Счисление проводится в камере Бюркер-Тюрк или Горяева, к которой хорошо прикреплена чистая оригинальная пластинка.

Заполнение камеры для счисления. В течение 2 мин. хорошо встряхивать пипетку, затем отбросив первые 2—3 капли налить в камеру для счисления, на край пластинки, небольшое количество смеси, которое заполнит пространство в силу капиллярности. Нежелателен избыток смеси, поскольку он заполняет канавки гемоцитометра. Подождать выпадение форменных элементов крови (1—2 мин. в случае эритроцитов и лейкоцитов, 10—15 мин. во влажной камере — для тромбоцитов).

Счисление эритроцитов, лейкоцитов и тромбоцитов. Исследование проводить обычным оптическим устройством (объективом 10 х для лейкоцитов и 20 х или 40 х для эритроцитов и тромбоцитов, при этом конденсор располагается в среднем положении). Счисление проводить на следующих площадях;
— для эритроцитов — 5 квадратов (1/25 квадратиков по 1/400), т.е. 1/5 мм 2 ;
— для лейкоцитов — 4 квадрата, расположенные по углам камеры Бюркер-Тюрк, т.е. 4 мм 2 ;
— для тромбоцитов — одинаково с эритроцитами.

Из клеточных элементов, расположенных по линиям, отграничивающим площади счисления, подсчитывать лишь те из них, которые находятся вдоль одной вертикальной отграничивающей линии (напр. левой) и одной горизонтальной (напр. верхней).

Расчет эритроцитов, лейкоцитов и тромбоцитов. В целях определения числа форменных элементов на мм 2 учитывать площадь, вышину, разведение:
№ эритроцитов/мм 3 = № насчитанных эритроцитов х 5 х 10 х х 200 = № эритроцитов х 10 000;
№ лейкоцитов/мм 3 = № насчитанных лейкоцитов х 10 х 20 : 4 = = № насчитанных лейкоцитов х 50;
№ тромбоцитов/мм 3 = № насчитанных тромбоцитов х 5 х 10 х х 20 = число насчитанных тромбоцитов х 1000.

Отбор крови для подсчета тромбоцитов можно проводить также пипеткой Potain для эритроцитов, в таком случае отсасывать кровь до деления 1 а разбавляющую жидкость до деления 101. Получится разведение 1/100. Тромбоциты счислять с 200 квадратиков (1/2 мм2), полученную цифру умножить на 2000.

Поправка числа лейкоцитов в случае эритробластоза. Когда в крови находятся эритробласты число ядерных элементов, полученных при счислении, откоррегировать соответственно результату лейкоцитной формулы, по формуле: № лейкоцитов/мм3 = № ядерных элементов/мм3 х 100 / (100 + № эритробластов/100 лейкоцитов).

Количественное определение кровяных клеток основывается на их счислении на небольшом, предполагаемым однородным образце и обобщением результата на всю массу крови организма. Между полученным результатом и фактическим значением может возникнуть разница (погрешность), которая подвергается математическому расчету для определения степени точности каждого метода в отдельности.

Отклонения от строгого соблюдения технических указаний создают многочисленные причины погрешностей на протяжении всего процесса производимых в камере подсчетов. В том числе:
а) погрешности отбора,
б) ошибки аппаратуры,
в) техники,
г) неоднородного распределения в счислительной камере.

Когда проба отбирается одной пипеткой а счисление производится в одной камере погрешность определения числа эритроцитов составляет ±30%, лейкоцитов +20%, а тромбоцитов +30—40%. В то время как в отношении лейкоцитов и тромбоцитов такая погрешность незначительна, поскольку она меньше биологических колебаний, в отношении эритроцитов точность техники представляется неудовлетворительной.

В целях максимального снижения погрешности – и повышения точности счислений попимо строгого соблюдения технических указаний, пробы следует отбирать в 2 пипетки, а счисление проводить в 2 гемоцитометрах. В таких условиях наименьшая погрешность для эритроцитов уменьшается до +11%, для лейкоцитов и тромбоцитов до +16%. Однако электронное счисление представляет значительно большую степень точности. Так в отношении эритроцитов погрешность составляет +3%, для лейкоцитов+4%, а в отношении тромбоцитов +7,5%.

Тем не менее, счисление эритроцитов в камере остается наиболее сложный и в то же время наименее точный метод, причины, по которой его нельзя рассматривать как метод отбора. Единственным показанием к счислению эритроцитов является определение вида анемии.

При счислении тромбоцитов, независимо от метода, для проверки точности результата делается сопоставление с аспектом тромбоцитов на мазке крови.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Камера Горяева. Практическое применение

Лабораторная камера Горяева, названная в честь русского врача, профессора Казанского университета Горяева Н.К., является специальным монолитным предметным стеклом, предназначенным для подсчета количества клеток в заданном объеме жидкости. Кроме того, используя камеру Горяева можно определить увеличение микроскопа. Камеры Горяева широко применяются в области клинических и биомедицинских исследований.

Популярные области применение камеры Горяева:

  • Подсчет форменных элементов крови
    • Подсчет эритроцитов
    • Подсчет лейкоцитов
    • Подсчет ретикулоцитов
    • И т.п.
  • Подсчет форменных элементов мочи
  • Исследование эякулята – оценка количественных и качественных параметров сперматозодиов
  • Вычисление концентрации спор в вакцине
  • Подсчет ооцист в препарате
  • И т.п.

Камеры Горяева выпускаются в двух модификациях: двухсеточные (двухкамерные) и четырехсеточные (четырехкамерные). В определении цены камеры Горяева важную роль играет качество шлифовки стекла, метод нанесения сетки – лазерная гравировка или же вакуумное напыление.

Что собой представляет камера Горяева? Камера Горяева есть не что иное, как прозрачное монолитное предметное стекло поперечными прорезями и нанесенной специальным образом микроскопической сеткой. В случае двухкамерной камеры Горяева мы имеем четыре прорези, образующие три поперечно расположенных площадки, при этом средняя площадка разделена продольной прорезью на две одинаковых камеры, на каждой из поверхности площадки которых нанесена сетка. В случае же четырехкамерной камеры Горяева мы получаем предметное стекло с пятью прорезями, образующих четыре площадки, при этом две внутренние дополнительно разделены продольной прорезью для получения четырех камер с нанесенной микроскопической сеткой на поверхности площадок.

Рассмотрим более подробно особенности сетки. Специальная сетка наносится на внутренние площадки, расположенные ниже соседних боковых площадок на 0.1мм. Боковые площадки предназначены для притирания покровного стекла до появления Ньютоновских колец. Как правило, используют специальное покровное стекло для камеры Горяева с закругленными краями. После притирания покровного стекла создается камера, закрытая с двух боковых сторон, а с двух других остаются щели (так называемые, капиллярные пространства), через которые и заполняют камеру. Что конкретно представляет собой сетка? Микроскопическая сетка камеры Горяева расчерчена на большие и маленькие квадраты, сгруппированные различными способами. Сетка Горяева содержит 225 больших квадратов (15 рядов по 15 больших квадратов в каждом), разграфленных вертикально, горизонтально, крест-накрест и неразграфленных. При этом размеры малых делений клетки сетки составляют 0.05мм, а больших – 0.2мм. Важно, что малый квадрат со стороной 0.05мм во всех сетках является постоянной величиной. Не трудно рассчитать, что площадь малого квадрата равна 0.0025 мм2, а большого квадрата – 0.04мм2 . Тогда получаем, что объем жидкости над квадратом, образованным большими делениями сетки Горяева, составляет 0.004 микролитра.

Подсчитав количество форменных элементов (ФЭ) над большим квадратом, можно подсчитать плотность данного типа клеток в суспензии по формуле:

где X – количество ФЭ/мл, M- количество ФЭ над большим квадратом.

При работе с камерой Горяева важно следить, чтобы ее рабочие поверхности оставались сухими и чистыми. Кроме того, при подсчете форменных элементов нельзя допускать наличие воздушных пузырей на сетке камеры, так как они могут мешать точности подсчета.

После работы с камерами Горяева следует выполнить их дезинфекцию одним из допустимых способов:

  1. Погружение в 70%-ный раствор этилового спирта на 30 минут
  2. Погружение в 4%-ный раствор формалина на 60 минут при комнатной температуре.

Приведем примеры применения камеры Горяева и некоторые формулы.

Практическое применение камеры Горяева

Прежде чем приступить к проведению лабораторных исследований, рекомендуется тщательно протереть камеру Горяева небольшим кусочком чистого бинта, слегка смоченного в спирте. Мы не советуем использовать для этих целей вату, так как она может оставить волокна. Таким же образом следует обработать и покровное стекло для камеры Горяева. Учтите, что при использовании низкокачественного спирта на поверхностях может образоваться осадок, тем или иным образом мешающий проведению исследований. Чтобы избежать появления связанных с этим явлением нежелательных эффектов, рекомендуется дополнительно протереть камеру и покровное стекло чистым марлевым шариком без спирта. Притирание покровного стекла к камере должно быть выполнено очень тщательно до появления на месте контакта радужных колец (так называемых, цветных колец Ньютона) с обоих краев. Для лучшего притирания можно воспользоваться одной хитростью и слегка выдохнуть воздух на камеру и покровное стекло, так чтобы небольшое количество влаги сконденсировалось на поверхностях стекол, что обеспечит лучший контакт.

При отсутствии специальных покровных стекол, прилагающихся к камере Горяева, можно использовать обычные стандартные покровные стекла.

Помимо целевого использования камеры Горяева для подсчета форменных элементов крови и т.п., данное стекло может расцениваться как своеобразный эталон для определения увеличения микроскопа. Для этого следует воспользоваться следующей формулой:

X=(p1-p2)/(a*N)

где X – это увеличение микроскопа; p1 – положение левой границы клетки камеры Горяева; p2 – положение правой границы клетки или группы клеток; N – количество клеток между измеряемыми границами; a – размер клетки камеры Горяева (равен 0,05 мм).

Камера Горяева также используется для подсчёта количества клеток в культуре.

Для подсчета клеточных элементов в жидкостях, содержащих их в меньших концентрациях, используются аналогичные по конструкции камеры Фукса-Розенталя и Нажотта, имеющие большую глубину – 0.2 мм и 0.5 мм соответственно. Эти же камеры используются в альгологии для количественного учета фитопланктона. Часто камера Фукса-Розенталя используется для подсчета форменных элементов спинномозговой жидкости. В отличие от камеры Горяева, большие квадраты сетки Фукс-Розенталя не разграфлены и сгруппированы по 16 квадратов, причем каждая такая группа ограничена тройными линиями.

Подсчет форменных элементов крови

Наиболее часто камеры Горяева используются именно для определения форменных элементов крови при проведении лабораторных исследований. Так для подсчета эритроцитов кровь необходимо развести в 200 раз, лейкоцитов – в 20 раз. Количество форменных элементов (ФЭ) в 1мкл крови определяют по формуле:

где N – искомое количество ФЭ в 1 мкл крови; m – число ФЭ в определенном количестве малых квадратов; q – количество малых квадратов сетки камеры Горяева, в которых подсчитывались ФЭ, s – степень разведения крови.

Формула для подсчета эритроцитов

Для подсчета эритроцитов используются 5 больших или 80 малых квадратов сетки, расположенных по диагонали. Таким образом, получаем следующую формулу:

Формула для подсчета лейкоцитов

Для подсчета лейкоцитов можно использовать один из трех методов:

1. Лейкоциты считают в 64 больших (пустых) квадратах

2. ​ Лейкоциты считают по всей сетке в 169 больших квадратах (рекомендуется для образцов крови с выраженной лейкопенией)

3. Лейкоциты считают в 100 больших квадратах (64 пустых + 36 разграфленных квадратов по периметру сетки)

Таблица нормальных значений:

Форменные элементыНорма
ЭритроцитыМужчины4 000 000 – 5 100 000 в 1 мкл
Женщины3 700 000 – 4 700 000 в 1 мкл
Лейкоциты4 000 – 9 000 в 1 мкл

Подсчет форменных элементов в мочевом осадке

Для определения ФЭ в мочевом осадке при анализах мочи по Нечипоренко, Аддис-Каковскому, Амбурже осуществляется по всей сетке Горяева и рассчитывается по формуле:

где N – число ФЭ в 1 мкл осадка; m – число ФЭ, подсчитанных по всей сетке; 0.676 – объем камеры Горяева (мкл)

Метод подсчета количества эритроцитов в крови с помощью камеры Горяева

Работа с камерой Горяева

Камера Горяева – оптическое устройство для подсчета клеток или иных соизмеримых с ними частиц в заданном объеме жидкости. Состоит из толстого предметного стекла, имеющего прямоугольное углубление (камеру) с нанесенной микроскопической сеткой и тонкого покровного стекла. Камера разработана профессором Казанского университета Горяевым Н.К. Благодаря увеличенному объему сетки отличается большей точностью подсчета, по сравнению с другими камерами (Тома, Цейса, Тюрка, Бюркера).

Технические характеристики камеры Горяева

Размеры малого квадрата камеры Горяева 0,05×0,05 мм
Размеры большого квадрата камеры Горяева 0,2×0,2 мм
Глубина камеры 0,1 мм
Объем жидкости под 1 малым квадратом 0,00025 мм3 (мкл) = 1/4000 мм3 (мкл)
Объем жидкости под 1 большим квадратом 0,004 мм3 (мкл) = 1/250 мм3 (мкл)
Объем камеры Горяева 0,9 мм3 (мкл)

Описание сетки камеры Горяева

Сетка камеры Горяева состоит из 225 больших квадратов, из которых 25 разделены на 16 малых квадратов.


Рис 1. Сетка камеры Горяева


Рис 2. Большой (1) и малый (2) квадраты сетки камеры Горяева


Рис 3. 225 больших квадратов сетки камеры Горяева


Рис 4. 100 больших квадратов сетки камеры Горяева


Рис 5. Большой квадрат камеры Горяева разделенный на 16 малых квадратов.

Обслуживание камеры Горяева

Между работой камера должна храниться в сухом месте. После работы камера дезинфицируется погружением на 30 минут в 70% раствор этилового спирта, или на 60 минут в 4% раствор формалина, после чего камера промывается дистиллированной водой и протирается мягкой салфеткой.

Правило подсчета клеток в квадрате (правило Егорова)


В квадрате считаются клетки, лежащие внутри его, а также касающиеся левой и верхней границ. Клетки, касающиеся правой и нижней границ при подсчете не учитываются.

Методика подсчета лейкоцитов в камере Горяева

Развести образец исследуемой крови в 20 раз 3–5% раствором уксусной кислоты с метиленовым синим (например, 20 мкл крови и 380 мкл р-ра уксусной к-ты). Камеру и покровное стекло насухо протереть марлей. Недопускается использование для протирки ватных тампонов из-за остающихся на стекле волокон. Аккуратно притереть покровное стекло к камере, слегка надавливая на него до появления цветных колец Ньютона. Заполнить камеру разведенной кровью и выдержать 1 минуту для прекращения движения клеток. При малом увеличении (окуляр ×10, объектив ×8) посчитать лейкоциты в 100 больших квадратах. Расчет числа лейкоцитов осуществляют, исходя из разведения крови (20) и числа больших квадратов (100), по формуле: X = (a×250×20) / 100, где Х – число лейкоцитов в 1 мкл крови; а – число лейкоцитов, посчитанных в 100 больших квадратах камеры Горяева. Практически, после сокращений в формуле, количество посчитанных лейкоцитов умножают на 50.

Методика подсчета эритроцитов в камере Горяева

Развести образец исследуемой крови в 200 раз в 0,9% растворе NaCl или растворе Гайема (берется 20 мкл крови и 4 мл раствора). Камеру и покровное стекло насухо протереть марлей. Недопускается использование для протирки ватных тампонов из-за остающихся на стекле волокон. Аккуратно притереть покровное стекло к камере, слегка надавливая на него до появления цветных колец Ньютона. Заполнить камеру разведенной кровью и выдержать 1 минуту для прекращения движения клеток. При малом увеличении (окуляр ×10, объектив ×8) посчитать эритроциты в 5 больших квадратах разделенных на 16 малых (т.е. в 80 малых квадратах). Рекомендуется считать клетки в квадратах, расположенных по диагонали. Расчет числа эритроцитов осуществляют, исходя из разведения крови (200) и числа малых квадратов (80), по формуле: X = (a×4000×200) / 80, где Х – число эритроцитов в 1 мкл крови; а – число эритроцитов, посчитанных в 80 малых квадратах камеры Горяева. Практически, после сокращений в формуле, количество посчитанных эритроцитов умножают на 10 000.

Гематологические исследования

1. Общий анализ крови

WBC -Общее количество лейкоцитов (х10 9 /л)

RBC -Общее количество эритроцитов (10 12 /л)

HGB -Гемоглобин (г/л)

HCT -Гематокрит (%, л/л)

MCV -Средний объем эритроцита (фл)

MCH -Среднее содержание гемоглобина в эритроците (пг)

MCHC -Средняя концентрация гемоглобина в эритроците (%)

RDW-SD -Ширина распределения эритроцитов по объему (%)

RDW-CV -Ширина распределения эритроцитов по объему (фл)

PLT -Общее количество тромбоцитов (х109/л)

PDW -Ширина распределения тромбоцитов по объему (%)

MPV -Средний объем тромбоцитов (фл)

P-LCR -Количество гигантских ( ˃12 мкм) тромбоцитов (%)

IG % -Относительное количество незрелых гранулоцитов (%)

NEUT % -Относительное количество нейтрофилов (%)

LYMPH % -Относительное количество лимфоцитов (%)

MONO % -Относительное количество моноцитов (%)

E0% -Относительное количество эозинофилов (%)

BASO % -Относительное количество базофилов (%)

IG # -Абсолютное количество незрелых гранулоцитов (х10 9 /л)

NEUT# -Абсолютное количество нейтрофилов (х10 9 /л)

LYMPH # -Абсолютное количество лимфоцитов (х10 9 /л)

MONO# -Абсолютное количество моноцитов (х10 9 /л)

E0# -Абсолютное количество эозинофилов (х10 9 /л)

BASO# -Абсолютное количество базофилов (х10 9 /л)

Анализ выполняется на гематологических анализаторах фирмы SYSMEX.

2. Посчет тромбоцитов (на анализаторе и при микроскопии по Фонио)

Тромбоциты – безъядерные клетки крови дисковидной формы размером 2 – 4 микрометра. Тромбоциты выполняют ангиотрофическую и адгезивно-агрегационную функции и принимают участие в процессах свертывания и фибринолиза, обеспечивают ретракцию (уплотнение) кровяного сгустка. Они способны переносить на своей мембране циркулирующие иммунные комплексы, поддерживать спазм сосудов. При активации тромбоциты приобретают сферическую форму и образуют специальные выросты (псевдоподии), с помощью которых они соединяются между собой (агрегируют) и прилипают к поврежденной стенке сосуда (способность к адгезии). Активированные тромбоциты выбрасывают содержимое своих гранул в кровяное русло: факторы свертывания, пероксидазу, серотонин, ионы кальция, АДФ, фактор Виллебранда, тромбоцитарный фибриноген, фактор роста тромбоцитов, которые участвуют в процессе свертывания.

Анализ включает в себя определение следующих параметров:

PLT -Общее количество тромбоцитов (х10 9 /л)

PDW – Ширина распределения тромбоцитов по объему (%)

MPV – Средний объем тромбоцитов (фл)

P-LCR -Количество гигантских ( ˃12 мкм) тромбоцитов (%)

Тромбоциты по Фонио (х10 9 /л)

Анализ выполняется на гематологических анализаторах фирмы SYSMEX и с помощью микроскопа фирмы OLIMPUS.

Подсчет количества тромбоцитов осуществляется двумя методами:

– на гематологическом анализаторе окрашенных специальным красителем тромбоцитов (оптический метод)

– при световой микроскопии окрашенного мазка крови с использованием иммерсионного масла

* Анализ выполняется совместно с клиническим анализом крови.

ПОКАЗАНИЯ К НАЗНАЧЕНИЮ

  • Тромбоцитопении
  • Тромбоцитоз

ПРИЧИНЫ ТРОМБОЦИТОЗА (увеличение количества тромбоцитов)

Реактивный тромбоцитоз (носит временный характери вызван активацией кроветворения)

  • После спленэктомии ( 3 -6 месяцев)
  • После острой кровопотери (кровоизлияния, оперативные вмешательства)
  • После острого гемолиза
  • При злокачественных новобразованиях
  • Ревматоидный артрит
  • Язвенный колит
  • Остеомиелит
  • Туберкулез

Опухолевый тромбоцитоз (при миелопролиферативных заболеваниях)

  • Миелоидный лейкоз
  • Эритремия
  • Идиопатическая геморрагическая тромбоцитоемия

ПРИЧИНЫ ТРОМБОЦИТОПЕНИИ (уменьшение количества тромбоцитов)

  • Идиопатическая тромбоцитопеническая пурпура
  • Гипо- и апластические анемии
  • Ауто- и имунные гемолитические анемии
  • Лейкозы
  • Метастазы рака в костный мозг
  • Дефицит витамина В12 и фолиевой кислоты
  • Лекарства
  • Вирусные инфекции (в т.ч. системная красная волчанка)
  • Лимфопролиферативные заболевания
  • Протезирование клапанов сердца
  • Экстракорпральное кровообращение
  • Портальная гипертензия

3. Подсчет ретикулоцитов

Количество ретикулоцитов в периферической крови является показателем активности эритропоэза, то есть отражает эритропоэтическую активность костного мозга.

Анализ включает в себя определение 7 параметров:

RET% – Относительное количество ретикулоцитов (%0)

RET# -Абсолютное количество ретикулоцитов (х10 9 /л)

IRF% – Относительное количество незрелых ретикулоцитов (%)

LFR% – Относительное количество зрелых ретикулоцитов (%)

MFR% – Относительное количество средних ретикулоцитов (%)

HFR% -Относительное количество больших ретикулоцитов (%)

RET – He -Содержание гемоглобина в ретикулоците (пг)

Анализ выполняется на гематологических анализаторах фирмы SYSMEX.

* Анализ выполняется совместно с клиническим анализом крови.

ПОКАЗАНИЯ К НАЗНАЧЕНИЮ

  • Анемии (критерий диагностики апластической анемии)
  • Диагностика эффективности эритропоэза
  • Оценка терапии неэффективного эритропоэза препаратами витамина В12, ЭПО, препаратами железа
  • Лейкозы
  • Миелодиспластические синдромы
  • Оценка состояния после трансплантации костного мозга

ПРИЧИНЫ РЕТИКУЛОЦИТОЗА (повышение количества ретикулоцитов)

  • Острая геморрагическая анемия (после острой кровопотери на 3-4 сутки)
  • Гемолитическая анемия
  • Эффективная терапия следующими препаратами:

витамин В12 (ретикулоцитарный криз на 5 – 8 день терапии)

  • препараты железа

препараты для лечения эритремии

препараты для лечения паркинсонизма

  • Гемолиз
  • Гемолитическая анемия
  • Талассемия
  • Малярия
  • Эритролейкозы
  • Метастазы в костный мозг
  • Успешная трансплантация костного мозга ( увеличение более чем на 20%)
  • Употребление допинга спортсменами (прием ЭПО)
  • Курение

ПРИЧИНЫ РЕТИКУЛОЦИТОПЕНИИ (снижение количества ретикулоциов)

  • Апластическая анемия
  • Анемии хронических заболеваний
  • Железодефицитная анемия
  • Сидеробластная анемия
  • В12-дефицитная анемия
  • Миелодиспластические синдромы
  • Опухолевые процессы в костном мозге
  • Нарушения работы щитовидной железы (микседема)
  • Тяжелые болезни почек (снижение эритропоэза)
  • Тяжелый алкоголизм
  • Хронические инфекции
  • Прием оральных контацептивов, противосудорожных препапратов

4. Определение СОЭ

Анализ включает в себя определение следующего параметра:

СОЭ -Скорость оседания эритроцитов (мм/ч).

Анализ выполняется по методу Панченкова как на анализаторе ROLLER,так и с помощью ручной методики.

5. Подсчет формулы крови (микроскопия)

Анализ включает в себя следующие параметры:

ПЯ % – Относительное количество палочкоядерных нейтрофилов (%)

СЯ % – Относительное количество сегментоядерных нейтрофилов (%)

ЛФ % -Относительное количество лимфоцитов (%)

МОН % -Относительное количество моноцитов (%)

ЭОЗ% -Относительное количество эозинофильных нейтрофилов (%)

БАЗ % -Относительное количество базофильных нейтрофилов (%)

Анализ выполняется путем подсчета групп лейкоцитов в окрашенном с помощью автоматической системы для окраски HEMATEK мазке крови при помощи световой микроскопии.

* Анализ выполняется совместно с клиническим анализом крови.

6. Определение свободного гемоглобина в плазме

У здоровых лиц в плазме содержится лишь незначительное (1—4 мг%) количество свободного гемоглобина. Это гемоглобин, выделившийся из закончивших свой жизненный цикл эритроцитов. Содержание свободного гемоглобина в плазме меняется в зависимости от интенсивности гемолиза и гемоглобинсвязывающей способности белков плазмы.

Анализ включает в себя определение следующего параметра:

Hb св. – Свободный гемоглобин (г/л)

Анализ выполняется на анализаторе HemoCue.

* Для расчета процента гемолиза, помимо определения свободного гемоглобина, нужен клинический анализ крови.

ПРИЧИНЫ ГЕМОГЛОБИНЕМИИ (повышенное содержание свободного гемоглобина в плазме крови)

Как правило, причиной повышения концентрации свободного гемоглобина являются состояния, при которых происходит повышенное разрушение эритроцитов:

  • Гемолитические анемии
  • Гемолитическая болезнь новорожденных
  • Гемоглобинопатии (серповидноклеточная анемия и ее варианты, талассемия, гемоглобиноз С),
  • Отравление гемолитическими ядами (чаще всего при укусах змей) с последующим развитием ДВС-синдрома
  • Гемолитические кризы в результате тяжелых посттрансфузионных реакций, при групповой или резус-несовместимости
  • Инфекционные заболевания (при малярии и как вторичный симптом при сепсисе)
  • Массивные ожоги (термические или химические)
  • Физиологическая гемоглобинемия (в результате воздействия на эритроидные клетки, расположенные в ткани легких или желудка при курении, гастрите, язвенной болезни).

7. Подсчет шизоцитов

Анализ включает в себя определение следующего параметра:

Шизоциты – (шт. на 10000 эритроцитов)

Подсчет шизоцитов (фрагментов эритроцитов) осуществляется при помощи световой микроскопии окрашенного мазка крови с использованием иммерсионного масла.

* Анализ выполняется совместно с клиническим анализом крови.

К методике подсчета кровяных телец в камере И.Т.М.О. с сеткой Горяева

  • Авторы:Кулагин А.А. 1
  • Учреждения:
    1. Центральная клинико-диагностическая лаборатория (завед. А А. Кулагин) Казанского государственного института усовершенствования врачей имени В.И. Ленина
  • Выпуск: Том 34, № 5-6 (1938)
  • Страницы: 603-607
  • Тип: Статьи
  • URL:https://kazanmedjournal.ru/kazanmedj/article/view/57400
  • DOI:https://doi.org/10.17816/kazmj57400

Цитировать

Полный текст

  • Аннотация
  • Полный текст
  • Об авторах
  • Список литературы
  • Дополнительные файлы
  • Статистика

Аннотация

Description of the Goryaev grid. In 1935 the Leningrad Institute of Precision Mechanics and Optics mastered the production of chambers for counting blood cells. The produced chambers are made of one glass plate, built like the Burker double chamber and equipped with the original Goryaev grid). I must say that before these cameras appeared on our market, there were only cameras from the OVU Experimental Laboratory. YuZ (Odessa), cameras of poor quality, which put laboratory workers in a hopeless position.

Ключевые слова

Полный текст

Описание сетки Горяева. В 1935 г. Ленинградский институт точной механики и оптики освоил производство камер для счета кровяных телец. Выпускаемые камеры сделаны из одной стеклянной пластинки, построены по типу двойной камеры Бюркера и снабжены оригинальной сеткой Горяева 1 ). Нужно сказать, что до появления этих камер на нашем рынке были только камеры Экспериментальной лаборатории О.В.У. ЮЗ (Одесса), камеры низкого качества, что ставило лабораторных работников в безвыходное положение.

Так как выпускаемые Ленинградским институтом камеры не снабжены описанием сетки Горяева или наставлением, как пользоваться сеткой и производить вычисления (и их нет также во всех распространенных руководствах по методике лабораторных исследований), я считаю не лишним заполнить этот пробел.

Сетка Горяева, представляющая собой расширенную сетку Предтеченского, имеет форму квадрата, каждая сторона которого равна 3 мм, а площадь сетки = 9 кв. мм.

Горизонтальными и вертикальными линиями, расположенными на расстоянии 1 5 мм одна от другой, квадрат делится на 15 горизонтальных и 15 вертикальных широких полос; пересечением линий образуются большие квадраты со сторонами, равными 1 5 мм и площадями в 1 25 кв. мм. Следовательно, каждая полоса содержит по 15 таких квадратов. Каждая третья широкая полоса (горизонтальная и вертикальная) тремя параллельными линиями разделена на 4 узкие полоски шириной в 1 20 мм. В квадратах узкие полоски образуют по 4 горизонтальных или вертикальных прямоугольника, а на местах перекреста по 16 малых квадратов. Сторона малого квадрата равна 1 20 мм, а площадь = 1 400 кв. мм, т. е. малый квадрат сетки Горяева равен малому квадрату всех других сеток, принятому за единицу счетной поверхности при подсчете эритроцитов. Т. е. сетка Горяева так же, как и сетка Предтеченского, имеет следующие преимущества по сравнению со всеми другими распространенными сетками: 1) отсутствие в сетке двойных и тройных линий не мешает счету и не требует напряжения внимания для отстраивания от них; 2) простые и ясные границы больших квадратов с группами по 16 малых квадратов четко выделяются в поле зрения микроскопа среди образующих их и затем расходящихся перпендикулярных линий; 3) сетка имеет большую площадь для счета красных кровяных телец: во всей сетке 400 малых квадратов, общая их площадь равна 1 кв. мм, т. е. равна всей площади сетки Тома и более, чем в два раза, превышает площадь всех малых квадратов сетки Бюркера (169 малых квадратов).

1 —широкая полоса сетки. 2 – большой квадрат. 3—большой квадрат, разделенный на 16 малых квадратов (один малый квадрат заштрихован)

По сравнению с сеткой Предтеченского сетка Горяева обладает одним лишним достоинством—большей площадью (площадь сетки Предтеченского-4 кв мм.), ч о имеет большое значение при счете белых кровяных телец. И если сам Предтеченский свою сетку в комбинации с камерой Бюркера считал «наиболее удачным разрешением вопроса, каким аппаратом надо пользоваться для счета форменных элементов крови» 2 ), то комбинация сетки Горяева с двойной камерой Бюркера является наиболее удачной, наиболее удобной из всех существующих и заслуживает самого широкого внедрения в наши лаборатории, как один из элементов рационализации лабораторной методики. Поэтому мы должны приветствовать появление камер И.Т.М.О. и выразить признательность Центральной Комиссии по стандартизации медицинских приборов при НКЗдр. СССР за ее в высшей степени удачный выбор типа камеры и сетки для снабжения медицинских лабораторий Союза. Только консерватизмом и преклонением перед «заграницей» можно объяснить тот факт, что предложенная в 1396 г. сетка Предтеченского и описанная в 1910 г. сетка Горяева не получили в свое время широкого распространения 3 ).

Принцип подсчета кровяных телец.

В поле зрения микроскопа большой квадрат, разделенный на 16 маленьких.

О—кровяные тельца, подлежащие сосчитытаванию, • – не подлежащие сосчитыванию.

Методика счета в сетке Горяева. Счет красных кровяных телец производится в больших квадратах, содержащих по 16 малых. Сосчитывают обычно не менее 5 таких квадратов, т. е., не менее 80 малых. Сосчитывание в 5 больших квадратах производится или по диагонали сетки, или в средней полосе. Если требуется подсчитать 10 квадратов, то рекомендуется производить подсчет в квадратах верхней и нижней полосы. Для подсчета 15 квадратов берутся верхняя, средняя и нижняя полосы, для 20—все полосы, кроме средней. Само собой разумеется, что речь идет о полосах, разделенных на узкие полоски. Самое сосчитывание лучше производить не в каждом малом квадрате по отдельности, а по группам из 4 таких квадратов, расположенным в 4 ряда: сначала сосчитывается верхний ряд слева направо, затем второй справа налево, третий—слева направо, четвертый—справа налево. При подсчитывании эритроцитов, расположившихся на линиях сетки, мы пользуемся принципом касания, рекомендованным Егоровым, как наиболее простым и объективным.

Результаты сосчитывания эритроцитов записываются или отдельно для каждого ряда, или при непрерывном счете сразу для всех 16 квадратов.

Вычисление производится по формуле:

Е = е . 400 . 200 . 10 80 = е . 10000

Е—число эритроцитов в 1 кб. мм исследуемой крови (искомая величина);

е— число эритроцитов, сосчитанных в 80 малых квадратах;

1/400 кв. мм—площадь малого квадрата;

1/200—степень разведения крови;

1/10мм—глубина камеры или толщина слоя жидкости, в котором производился подсчет.

Практически, для получения числа эритроцитов в 1 кб. мм исследуемой крови при подсчете в 80 малых квадратах и разведении крови 1:200 достаточно к полученной цифре приписать справа четыре нуля (т. е. умножить ее на 10000). Напр., в 80 малых квадратах сосчитано 497 эритроцитов, содержание эритроцитов в 1 кб. мм исследуемой крови =4 970 000. При подсчете белых кровяных телец мы пользуемся широкими полосами, причем, как правило, за единицу счетной поверхности берем не отдельный квадрат, а целую полосу во всю ширину сетки» (ширина полосы=1/5 мм., длина полосы ширине сетки=3мм площадь—3/5 кв. мм). Таких полос подсчитывается не менее 10 в случае лейкопении подсчитываются все 15 полос или даже наполняются обе камеры и подсчитываются обе сетки. В тех случаях, когда подсчет ограничивается 10 полосами, удобнее пользоваться пятью парами полос, не разделенных на узкие полоски» Только в случаях с большим содержанием белых телец (большой реактивный лейкоцитоз, лейкемический состав крови) сосчитывание производится по отдельным квадратам или группам квадратов.

В течение подсчета полосы непрерывно передвигаются под линзой микроскопа. Для ускорения подсчет производится зигзагообразно: первая полоса сосчитывается слева направо, вторая—справа налево и т. д.

Вычисление содержания белых кровяных телец производится по формуле:

L = 1 * 10 * 10 9 = 1 * 100 9 – для всей сетки (15 полос = 9 кв.м)

для 2/3 сетки (10 полос = 6 кв.м): L = 1 * 100 6

для 1/3 сетки (5 полос = 3 кв.м): L = 1 * 100 3

L — число белых кровяных телец в 1 кб. мм. исследуемой крови (искомое);

1 — число белых кровяных телец сосчитанное в 15 (10,5) полосах 1 : 10—степень разведения крови;

1 /10—глубина камеры.

Сосчитывание в камере лучше всего производить, пользуясь объективами: 5 и 5 Леитца, D (40 x Цейсса, 6Ь Рейхерта, 40 x советского производства и окуляром 11 (5 x ). При отсутстрии указанных объективов, а также во избежание раздавливания дорогих шлифованных покровных стекол для камер (равным образом при пользовании еще более толстыми покровными стеклами) можно рекомендовать слабые объективы (с большим рабочим расстояние; наир., очень удобны 20 х советские объективы и 10 окуляры; при меньших увеличениях объективов (16 х , 10 х ) следует брать более сильные окуляры (увеличение должно быть не менее 200).

В заключение позволю себе выразить уверенность, что описание камеры Бюркера с сеткой Горяева (камеры ИТМО) и пользования ею войдет в новые издания всех советских руководств по методике клинического лабораторного исследования, а самая камера получит общее признание и широкое распространение в лабораториях Союза.

1 ) Кроме оригинальной сетки Горяева известна еще сетка Горяева-Паппенгейма представляющая редуцированную сетку Горяева.

2 ) В. Е. Предтеченский. Руководство к клинической микроскопии. 4-е издание. 1913, стр. 76.

3 ) Сетка Предтеченского в комбинации с камерой Тома известна под названием камеры Габричевского в комбинации с камерой Бюркера как камера Ключарева.

Метод подсчета количества эритроцитов в крови с помощью камеры Горяева

Являясь основной частью клеточной популяции крови млекопитающих, эритроциты и тромбоциты в значительной степени определяют ее реологические свойства [4]. Весьма велика в этом плане роль их агрегации и поверхностной геометрии, и в этой связи остаются весьма востребованными методические подходы к изучению микрореологических эритроцитов и тромбоцитов у людей и животных, что позволит своевременно и адекватно проводить у них их оценку и при необходимости контролируемую, предотвращая дисциркуляторные нарушения в жизненно важных органах [3, 5].

Не вызывает сомнений, что микрореологические дисфункции эритроцитов и тромбоцитов являются также и важным патогенетическим фактором развития многих заболеваний. В условиях патологии ухудшение их реологических свойств может стать первоосновой нарушения функций внутренних органов, что во многом способно определить тяжесть состояния человека или животного и дальнейший прогноз. Все это подчеркивает диагностическую ценность лабораторной оценки агрегации и цитоархитектоники эритроцитов и тромбоцитов.

Имеющие место в кровотоке межэритроцитарные поверхностные взаимодействия определяются пространственной плотностью и качественным составом мембраны (фосфатные, аминные, карбоксильные и др. химические группы) [8]. Понижение плотности поверхностного отрицательного заряда эритроцитов приводит к дестабилизации их суспензии, возможно, за счет сорбции на поверхности мембраны эритроцита макромолекул (чаще всего фибриноген) [10].

Наблюдаемая физиологическая агрегация эритроцитов имеет характер линейных цепочек в виде монетных столбиков, состоящих из 5–6 клеток, с возможностью полной гидродинамической дезагрегации эритроцитов в сосудистом русле. При очень низких скоростях сдвига эритроциты даже в норме почти полностью объединены в монетные столбики. При повышении скорости сдвига монетные столбики полностью разрушаются и кровь течет по сосудам, состоя из отдельных клеток [11].

Наиболее важным признаком патологической агрегации эритроцитов является глыбчатая их агрегация с увеличением прочности сцепления между эритроцитами, сохраняющаяся даже при = 250 с-1. Такие агрегаты циркулируют по крови благодаря наличию в организме системы шунтов, минуя капиллярное русло, обеспечивая тем самым не только непрерывность кровотока, но и его централизацию с недостаточностью тканевой перфузии [10, 11].

Изменения формы эритроцитов от дискоидной до сферической приводит к невозможности свободной упаковки эритроцитов, что ведет к увеличению площади соприкосновения (следовательно, к патологической агрегации). При этом, эхиноцитарная трансформация существенно увеличивает прочность агрегатов.

Колебания соотношения альбумина и фибриногена в плазме является дополнительным показателем суспензионной стабильности крови. Альбумин – наиболее эффективный дезагрегант и естественный антагонист фибриногена [1, 10]. При уменьшении соотношения между концентрацией альбумина и крупномолекулярными белками (глобулины, фибриногеном и продуктами деградации фибрина) ослабляет суспензионную стабильность крови.

Для оценки агрегации эритроцитов кровь из вены забирают в утренние часы после 14-часового голодания из вены через толстую иглу самотеком в пробирку с цитратом натрия в соотношении 9:1 и центрифугируют 10 мин. при 3 000 об./мин. В 96 луночной планшетке заполняют 2 лунки 0,2 мл плазмы обследуемого. Из пробирки удаляется вся плазма и слой лейкоцитов. Эритроциты ресуспепдируются стандартным фосфатным буфером в соотношении 1:4 с последующим центрифугированием в течение 10 мин. при 3 000 об./мин., что позволяет отмыть их от остатков плазмы при удалении надосадочной жидкости. После этого берется 0,02 мл эритроцитов и ресуспендируется в первой заполненной аутологичной плазмой лунке 96 луночной планшетки, что позволяет получить 10 % гематокрит. Затем из этой лунки забирают чистой сухой пипеткой 0,02 мл содержимого и помещают во вторую заполненную лунку, что позволяет получить 1 % гематокрит. После этого 1 сетку в камере Горяева заполняют полученной суспензией эритроцитов, выдерживают 3 мин. для возникновения спонтанной агрегации и проводят подсчет свободных эритроцитов (в т.ч. 2 эритроцита вместе) и агрегатов, начиная с 3 эритроцитов, соединенных в виде «монетных столбиков») в 2-х больших квадратах камеры (объектив х 40, окуляр х 10). Считаются количество «монетных столбиков» и количество эритроцитов, вовлеченных в них.

Агрегационную активность эритроцитов можно регистрировать с помощью светового микроскопа путем подсчета в камере Горяева количества агрегатов эритроцитов, агрегированных и неагрегированных эритроцитов во взвеси отмытых эритроцитов в плазме крови с вычислением среднего размера агрегата (СРА) [5]:

где СЭА – сумма всех эритроцитов в агрегате;

КА – количество агрегатов.

Показатель агрегации (ПА) рассчитывается по следующей формуле:

ПА = (СРА х КА + КСЭ) / (КА + КСЭ),

где КСЭ – количество свободных эритроцитов.

Процент неагрегированных эритроцитов (ПНА) определяется:

ПНА = (КСЭ х 100) / (СРА х КА + КСЭ).

Оценка цитоархитектоники эритроцитов ведется с применением световой фазовоконтрастной микроскопии. Для исследования поверхностной геометрии эритроцитов кровь фиксируется в 1 % растворе глутарового альдегида («Fluka», Switzerland) на среде 199 (рН 7,4) при температуре 4 ºС в течение одних суток, после чего готовится препарат «раздавленная капля». Подсчет клеток производится в процентах на 200 эритроцитов. Регистрируемые эритроциты типируются согласно классификации, предложенной Г.И. Козинцем с соавт. [2], подразделяющей эритроциты на десять классов: дискоциты; дискоциты с одним выростом; дискоциты с гребнем; дискоциты с множественными выростами; эритроциты в виде тутовой ягоды; куполообразные эритроциты (стоматоциты); сфероциты с гладкой поверхностью; сфероциты с шипиками на поверхности; эритроциты в виде «спущенного мяча»; дегенеративные формы эритроцитов.

Первые пять классов эритроцитов (дискоциты, в т.ч. с признаками эхиноцитарной трансформации) считаются обратимо деформированными в виду их способности спонтанно восстанавливать форму. Остальные классы эритроцитов относят к группе необратимо деформированных или предгемолитических форм.

Современная оценка микрореологических свойств крови немыслима без определения агрегации тромбоцитов, осуществляющейся визуальным способом [7], хорошо показавшим себя на практике [6]. С этой целью кровь забирают с цитратом натрия 3,8 % в соотношении 9:1, центрифугируют 5 мин. при 1000 об/мин. для получения богатой тромбоцитами плазмы (БТП). Часть плазмы отбирают, а оставшуюся центрифугируют при 3000 об/мин. в течение 20 мин., получают бедную тромбоцитами плазму (БеТП). БТП стандартизируют по числу тромбоцитов (до 200·109/л.).

Из получившегося объема стандартизированной плазмы отбирают из расчета по 0,02 мл плазмы на каждый исследуемый индуктор и их комбинацию. Оставшийся объем плазмы можно использовать для других гематологических и биохимических исследований. Из отобранного объема стандартизированной плазмы на предметное стекло наносят 0,02 мл плазмы и разными пипетками по 0,02 мл раствора индуктора. В качестве агонистов возможно применение, в т.ч. АДФ (0,5×10-4 М), коллагена (разведение 1:2 основной суспензии), тромбина (0,125 ед/мл), адреналина (5,0×10-6 М), ристомицина (0,8 мг/мл), перекиси водорода (7,3×10-3 м). Стеклянной палочкой смешивают плазму с индукторами и включают секундомер. Смесь перемешивают так, чтобы жидкость занимала окружность диаметром около 2 см. Покачивая стекло круговыми движениями в проходящем свете осветителя, на черном фоне следят через лупу за возникновением агрегатов. При появлении отчетливых агрегатов, просветлении раствора и прилипании части агрегатов к стеклу секундомер отключают и фиксируют время агрегации тромбоцитов. Реакцию повторяют 2–3 раза с каждым индуктором и находят среднее арифметическое из полученных результатов.

Оптимальными значениями агрегации тромбоцитов при концентрации тромбоцитов 200·109/л составляет для АДФ – 37–50 с, коллаген – 27–36 с, ристомицин – 38–50 с, тромбин – 48–59 с, адреналин – 81–106 с, перекись водорода – 40–60 с.

Регистрация внутрисосудистой активности тромбоцитов возможна по методу [9], когда из локтевой вены берут 2 мл в силиконированную центрифужную пробирку с 8 мл раствора 0,125 % глутаральдегида и сразу центрифугируют 6 мин при 1000 об/мин. Супернатант разводят раствором глутаральдегида в четыре раза (0,1 мл + 0,3 мл раствора), перемешивают пипеткой 5 раз и заполняют камеру Горяева, которую помещают на 20 мин. в увлажненную чашку Петри.

При помощи фазовоконтрастного микроскопа определяют процентное распределение описанных выше форм тромбоцитов на 200 клеток. Первым видимым проявлением активации кровяных пластинок является изменение их формы, которое может служить для адекватной оценки этого процесса как индуцируемого in vitro, так и развивающегося в организме. В сосудистом русле при отсутствии патологических активирующих влияний подавляющее большинство интактных тромбоцитов, называемых дискоцитами, имеет характерную дискоидную форму или форму чечевицы и практически гладкую поверхность. Интактное состояние тромбоцитов, сопряженное с формой дискоцита, – один из важнейших факторов, препятствующих неоправданному развитию внутрисосудистого тромбоза. Механизмы его обеспечения достаточно сложны. Это отчасти связано с тем, что интактное состояние этих клеток сочетается с потенциальной возможностью быстрых и специфичных преобразований при появлении в кровотоке активирующих стимулов. Характерное изменение формы при индуцировании гемостатических реакций кровяных пластинок отражает определенные процессы их внутренней ультраструктурной и биохимической перестройки [12]. При этом развивается типичная последовательность изменений: от формы интактного тромбоцита – дискоцита к активированным клеткам – дискоэхиноциту, т.е. дискоциту, у которого на поверхности появляются отростки, и далее к сфероциту или сфероэхиноциту. У последнего не только форма становится все более сферичной, но и возрастает число отростков.

Оценка степени агрегации осуществляется также по относительному числу всех тромбоцитов, вовлеченных в агрегационную реакцию. Последнее может быть выявлено по процентному отношению числа агрегировавших тромбоцитов к общему их числу в препарате (т.е. к сумме свободно лежащих клеток и вовлеченных в агрегацию) по формуле:

где x, y, z и т.д. – число агрегатов соответствующего размера на 500 свободных тромбоцитов.

Оценка состояния основных микрореологических свойств эритроцитов и тромбоцитов не требует дорогостоящего оборудования, дает полную информацию об их динамике. При применении данных морфофункциональных методов установлено, что и у здорового человека и животных в циркулирующей крови лишь у небольшой части эритроцитов и тромбоцитов изменена форма. Однако в патологических условиях изменения этих показателей могут быть намного более выражены вследствие внутрисосудистой альтерации эритроцитов и кровяных пластинок. Это обуславливает то, что при патологических состояниях микроциркуляция может значительно ухудшаться, т.к. появляется значительное количество эритроцитов и тромбоцитов с измененной формой и их внутрисосудистых агрегатов.

Таким образом, оценка агрегации и цитоархитектоники – это важный элемент диагностики состояния животных и человека, позволяющий при необходимости своевременно определять сроки начала корректирующего вмешательства.

Рецензенты:

Громнацкий Н.И., д.м.н., профессор, профессор кафедры терапии № 2 Курского государственного медицинского университета, г. Курск;

Жукова Л.А., д.м.н., профессор, заведующий кафедрой эндокринологии и диабетологии Курского государственного медицинского университета, г. Курск.

Подсчет числа тромбоцитов (по Фонио)

Тромбоциты участвуют во всем процессе свертывания крови, начиная от образования первичного тромба в области повреждения кровеносных сосудов и заканчивая участием в процессах регулирования проницаемости и тонуса сосудов.

Подсчет максимально точного количества тромбоцитов осуществляется при помощи камеры Горяева и метода Фонио. Подсчет тромбоцитов по Фонио довольно точен. Метод Фонио является наиболее удобным именно при автоматическом подсчете.

Единицы измерения

В мазке, подвергнутом окрашиванию, считают 1000 эритроцитов и все попавшиеся тромбоциты. В итоге получается число, выражаемое промилле. Чтобы получить абсолютное количество тромбоцитов врач клинической лабораторной диагностики данную величину перемножает на количество эритроцитов, имеющихся в 1 мкл, а затем разделит на 1000.

Какой биоматериал можно использовать для исследования?

Венозную, капиллярную кровь.

Как правильно подготовиться к исследованию?

  • Исключить из рациона алкоголь и лекарственные препараты (по согласованию с врачом) за сутки до сдачи крови.
  • Не принимать пищу в течение 8 часов перед исследованием, можно пить чистую негазированную воду.
  • Исключить физическое и эмоциональное перенапряжение и не курить в течение 30 минут до исследования.

Общая информация об исследовании

Важное условие для корректной работы системы свертывания – это нахождение в кровяном русле определенного количества зрелых тромбоцитов. Отклонения в любую сторону могут иметь неблагоприятные последствия. Норма тромбоцитов в крови отличается в зависимости от возраста и пола. Если их уровень понижен, появляется склонность к кровотечениям, свертываемость крови ухудшается, ее трудно остановить. Если содержание тромбоцитов превышает норму, кровь становится густой, есть риск образования тромбов и закупорки сосудов.

Тромбоциты образуются в костном мозге из гигантских клеток – мегакариоцитов. По сути, они являются фрагментами этих клеток и представляют собой окруженные мембраной мелкие безъядерные бесцветные пластинки овальной или округлой формы, включающие гранулы. Диаметр тромбоцитов составляет от 2-х до 4-х мкм. Их принято называть клетками крови, как лейкоциты и эритроциты, хотя они таковыми не являются. Это постклеточные структуры, или бляшки Биццацеро (по имени итальянского ученого, который внес большой вклад в их изучение). В крови находится около 2/3 всех тромбоцитов, остальные содержатся в селезенке.

Функции кровяных пластинок

При повреждении сосудистой стенки сразу же происходит активация кровяных пластинок. Они приобретают шаровидную форму, на них появляются выросты, из-за чего они становятся похожими на звезду. Тромбоциты в активной форме способны к слипанию друг с другом (агрегации) и прилипанию к стенке сосуда (адгезии). В плазму крови они выделяют фермент, под действием которого растворимый фибриноген преобразуется в нерастворимый фибрин, который опутывает форменные элементы крови своими нитями, словно сетями. Образовавшийся тромб закрывает дефект в поврежденном сосуде. Тромбоциты принимают участие в растворении фибринового сгустка и поддерживают спазм поврежденных сосудов. Еще одна важная функция – это обеспечение питательными веществами клеток, которые выстилают внутреннюю поверхность кровеносных сосудов.

Что означают результаты?

ВозрастРеференсные значения
Меньше 10 дней99 – 421 *10^9/л
10 дней – 1 месяц150 – 400 *10^9/л
1-6 месяцев180 – 400 *10^9/л
6 месяцев – 1 год160 – 390 *10^9/л
1-5 лет150 – 400 *10^9/л
5-10 лет180 – 450 *10^9/л
10-15 лет150 – 450 *10^9/л
Больше 15 лет180 – 320 *10^9/л

Тромбоцитопения

  • тромбоцитопеническая пурпура / гемолитико-уремический синдром;
  • ДВС-синдром (диссеминированное внутрисосудистое свертывание);
  • лекарственная тромбоцитопения (ко-тримоксазол, прокаинамид, тиазидовые диуретики, гепарин);
  • гиперспленизм;
  • идиопатическая тромбоцитопеническая пурпура.

Следует помнить, что у беременных женщин в норме тромбоциты могут снижаться до 75-150×109/л.

Тромбоцитоз

  • Первичный тромбоцитоз (злокачественное заболевание миелоидного ростка костного мозга, в том числе эссенциальный тромбоцитоз и хронический миелолейкоз);
  • Вторичный тромбоцитоз после удаления селезенки, при инфекционном процессе, железодефицитной анемии, гемолизе, травме и злокачественных заболеваниях (реактивный тромбоцитоз).
  • Повышение Hb, MCV или общего количества лейкоцитов свидетельствует в пользу первичного тромбоцитоза.
Ссылка на основную публикацию